gpt4 book ai didi

algorithm - 获取集合 A 的 r 长组合的快速方法,该组合至少具有集合 B 中的一个元素,集合 B 是 A 的子集

转载 作者:塔克拉玛干 更新时间:2023-11-03 06:14:11 26 4
gpt4 key购买 nike

例如,如果 A={0,1,2,3,4}r=3B={1,4},结果将是:

[0, 1, 2]
[0, 1, 3]
[0, 1, 4]
[0, 2, 4]
[0, 3, 4]
[1, 2, 3]
[1, 2, 4]
[1, 3, 4]
[2, 3, 4]

这是 A 的所有 r 长组合,不包括 [0, 2, 3],因为那个不包含 1 或 4。

我目前的解决方案如下,使用最快的算法来获得我所知道的正常组合,并且只是做一个简单的检查以查看生成的组合是否也包含 B 的元素(java):

    int[] A = new int[]{0,1,2,3,4};
int[] B = new int[]{1,4};
int n = A.length;
int r = 3;

int[] picks = new int[r]; //Holds indexes of elements in A
for (int i = 0; i < picks.length; i++)
picks[i] = i;

int lastindex = picks.length - 1;

outer:
while (true) {
int at = lastindex;
while (true) {
picks[at] += 1;
if (picks[at] < n) {
int displacement = picks[at] - at; // at + displacement = picks[at], at + displacement + 1 = picks[at] + 1 ,...

// Make all picks elements after at y = picks[at] + x, so picks={0, 2, 4, 6, 18, 30} & at=3 --> picks={0, 2, 4, 5, 6, 7}
// (Note that this example will never take place in reality, because the 18 or the 30 would be increased instead, depending on what n is)

// Do the last one first, because that one is going to be the biggest,
picks[lastindex] = lastindex + displacement;
if (picks[lastindex] < n) { // and check if it doesn't overflow
for (int i = at + 1; i < lastindex; i++)
picks[i] = i + displacement;

int[] combination = new int[r];
for (int i = 0; i < r; i++)
combination[i] = A[picks[i]];
System.out.print(Arrays.toString(combination));
//^With this, all r-long combinations of A get printed

//Straightforward, bruteforce-ish way of checking if int[] combination
//contains any element from B
presence:
for (int p : combination) {
for (int b : B) {
if (p==b) {
System.out.print(" <-- Also contains an element from B");
break presence;
}
}
}

System.out.println();

break;
}
}
at--;
if (at < 0) {
//Moving this check to the start of the while loop will make this natively support pick 0 cases (5C0 for example),
//but reduce performance by I believe quite a bit. Probably better to special-case those (I haven't
// done that in this test tho)
break outer;
}
}
}

输出:

[0, 1, 3] <-- Also contains an element from B
[0, 1, 4] <-- Also contains an element from B
[0, 2, 3]
[0, 2, 4] <-- Also contains an element from B
[0, 3, 4] <-- Also contains an element from B
[1, 2, 3] <-- Also contains an element from B
[1, 2, 4] <-- Also contains an element from B
[1, 3, 4] <-- Also contains an element from B
[2, 3, 4] <-- Also contains an element from B

正如评论中所写,我认为这种方法非常初级。谁能想到一种更快的方法来做到这一点?

最佳答案

假设您有一个 int[][] FindCombinations(int[] set, int length) 函数返回所有 length-long 组合的列表 设置,执行以下操作(伪代码):

for i=1 to B.length
{
int bi = B[i];

A = A - bi; // remove bi from A
foreach C in FindCombinations(A, r-1)
{
output C+bi // output the union of C and {bi}
}
}

这样一来,所有组合都至少包含 B 中的一个元素(并且还可能包含 B 中尚未使用的元素),而无需太多额外工作。所有其他组合都被免费消除(根本不必找到),并且组合包含每个组合的 B 中的元素的测试也被消除。

此算法是否更快,在很大程度上取决于您从集合中添加/删除元素的效率以及包含与排除组合的百分比(即,如果您最终只排除了总组合的 1%,则可能不值得它)

请注意,当获得与 {b[i]} 并集的组合时,这些组合可能还包含一个元素 B[j],其中 j>i。当您达到与 B[j] 并集的组合时,它们都不包含 B[i],因此所有组合都是唯一的。

关于algorithm - 获取集合 A 的 r 长组合的快速方法,该组合至少具有集合 B 中的一个元素,集合 B 是 A 的子集,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43667930/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com