gpt4 book ai didi

python - Fast NMS 算法抑制框不重叠

转载 作者:塔克拉玛干 更新时间:2023-11-03 06:06:54 28 4
gpt4 key购买 nike

我正在测试 Fast NMS algorithm by Malisiewicz et al .我在运行示例时注意到,在一种情况下,如果我输入两个没有重叠的特定框,并且 IoU 阈值低于大约 0.75,无论如何都会抑制一个框。

我对 NMS 有误解吗?我认为如果框之间的重叠为零,则不应丢弃任何框,无论 IoU 阈值设置在何处。

例子:

import numpy as np

def non_max_suppression_fast(boxes, overlapThresh):

# if there are no boxes, return an empty list
if len(boxes) == 0:
return []

# initialize the list of picked indexes
pick = []

# grab the coordinates of the bounding boxes
x1 = boxes[:,0]
y1 = boxes[:,1]
x2 = boxes[:,2]
y2 = boxes[:,3]

# compute the area of the bounding boxes and sort the bounding
# boxes by the bottom-right y-coordinate of the bounding box
area = (x2 - x1 + 1) * (y2 - y1 + 1)

idxs = np.argsort(y2)

# keep looping while some indexes still remain in the indexes
# list
while len(idxs) > 0:
# grab the last index in the indexes list and add the
# index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
pick.append(i)

# find the largest (x, y) coordinates for the start of
# the bounding box and the smallest (x, y) coordinates
# for the end of the bounding box
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])

# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)

# compute the ratio of overlap
overlap = (w * h) / area[idxs[:last]]

# delete all indexes from the index list that have
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlapThresh)[0])))

# return only the bounding boxes that were picked
return boxes[pick]


# Two test boxes
#xmin,ymin,xmax,ymax
boxes = np.vstack([[0.3, 0.2, 0.4, 0.5],
[0.1, 0.1, 0.2, 0.2]])


# no box suppression
print(non_max_suppression_fast(boxes, overlapThresh=.75))

# one box is suppressed
print(non_max_suppression_fast(boxes, overlapThresh=.74))

最佳答案

您的输入测试用例不合法,参数 boxes 需要绝对格式的框坐标,例如在像素坐标中。

你可以注意到,在计算所有盒子的面积时,它是

area = (x2 - x1 + 1) * (y2 - y1 + 1)

+1 是一个添加的像素,确保 area 是盒子实际占用的像素数。

试试这个:

boxes = np.vstack([[3, 2, 4, 5], 
[1, 1, 2, 2]])

关于python - Fast NMS 算法抑制框不重叠,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56032918/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com