gpt4 book ai didi

python - 优化算法以找到到所有建筑物的最短距离

转载 作者:塔克拉玛干 更新时间:2023-11-03 05:42:38 25 4
gpt4 key购买 nike

问题是找到给定网格的 0 值点到所有建筑物的最短距离。您只能向上、向下、向左和向右移动。您可能会遇到以下值:

0 - 空白空间1 - 建筑2 - 障碍

我用 Python 编写的解决方案如下:

import sys

class Solution(object):
def shortestDistance(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
if grid is None:
return -1

tup = self.findPoints(grid)
buildings = tup[0]
zeroPoints = tup[1]
distances = []
for points in zeroPoints:
dist = self.bfs(grid, points, buildings)
distances += [dist]

return self.select(distances)

def findPoints(self, grid):
buildings = 0
zeroPoints = []
for i in range(len(grid)):
for j in range(len(grid[0])):
if grid[i][j] == 0:
zeroPoints += [[i,j]]
elif grid[i][j] == 1:
buildings += 1
return (buildings, zeroPoints)

def bfs(self, grid, root, targets):
hits, sumDist = 0, 0
targetsFound = []

while hits < targets:
q = []
q.append((root, 0))
found = False
visited = []
while(len(q) > 0):
tup = q.pop(0)
curr = tup[0]
dist = tup[1]

if grid[curr[0]][curr[1]] == 1 and curr not in targetsFound:
found = True
sumDist += dist
targetsFound += [curr]
break

if grid[curr[0]][curr[1]] == 0:
if (curr[0] - 1) >= 0 and grid[curr[0] -1][curr[1]] != 2 and [curr[0] - 1, curr[1]] not in visited:
q.append(([curr[0] - 1, curr[1]], dist + 1))
visited += [[curr[0] - 1, curr[1]]]
if (curr[0] + 1) < len(grid) and grid[curr[0] + 1][curr[1]] != 2 and [curr[0] + 1, curr[1]] not in visited:
q.append(([curr[0] + 1, curr[1]], dist + 1))
visited += [[curr[0] + 1, curr[1]]]
if (curr[1] - 1) >= 0 and grid[curr[0]][curr[1] - 1] != 2 and [curr[0], curr[1] - 1] not in visited:
q.append(([curr[0], curr[1] - 1], dist + 1))
visited += [[curr[0], curr[1] - 1]]
if (curr[1] + 1) < len(grid[0]) and grid[curr[0]][curr[1] + 1] != 2 and [curr[0], curr[1] + 1] not in visited:
q.append(([curr[0], curr[1] + 1], dist +1))
visited += [[curr[0], curr[1] + 1]]

if found:
hits += 1
else:
return - 1

return sumDist

def select(self, distances):
min = sys.maxsize
for dist in distances:
if dist < min and dist != -1:
min = dist

if min == sys.maxsize:
return -1
else:
return min

我的问题是:

如何提高解决方案的效率?现在我在以下输入上超过了 Leetcode 的时间限制,但它对所有其他测试输入都是正确的:

[[2,0,0,2,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,1,2,0,2,0,1,1,0],[0,1,0,1,1,2,0,0,2,0,0,2,0,2,2,0,2,0,2,0,0,0,0,0,0,0,0,0],[1,0,0,1,2,0,0,2,0,2,0,0,0,0,0,0,0,0,0,2,0,2,0,0,0,0,0,2],[0,0,2,2,2,1,0,0,2,0,0,0,0,0,0,0,0,0,2,2,2,2,1,0,0,0,0,0],[0,2,0,2,2,2,2,1,0,0,0,0,1,0,2,0,0,0,0,2,2,0,0,0,0,2,2,1],[0,0,2,1,2,0,2,0,0,0,2,2,0,2,0,2,2,2,2,2,0,0,0,0,2,0,2,0],[0,0,0,2,1,2,0,0,2,2,2,1,0,0,0,2,0,2,0,0,0,0,2,2,0,0,1,1],[0,0,0,2,2,0,0,2,2,0,0,0,2,0,2,2,0,0,0,2,2,0,0,0,0,2,0,0],[2,0,2,0,0,0,2,0,2,2,0,2,0,0,2,0,0,2,1,0,0,0,2,2,0,0,0,0],[0,0,0,0,0,2,0,2,2,2,0,0,0,0,0,0,2,1,0,2,0,0,2,2,0,0,2,2]]

注意:更改 visited 和 targetsFound 可以提高效率,但不足以通过所有测试用例。

更新:

通过更改算法以从每个建筑物而不是每个零点开始搜索,我能够在某些大输入上将算法改进 96% 并通过所有测试用例。更新后的算法如下。感谢 Nether 的建议。

def shortestDistanceWalk(grid):

onePoints = findPointsWalk(grid)

for point in onePoints:
bfsWalk(grid, point)

shortestDistance = sys.maxsize
for i in range(len(grid)):
for j in range(len(grid[0])):
if grid[i][j] < 0 and shortestDistance > (grid[i][j] * -1):
shortestDistance = (grid[i][j] * -1)

if shortestDistance == sys.maxsize:
return -1
else:
return shortestDistance

def findPointsWalk(grid):
onePoints = []
for i in range(len(grid)):
for j in range(len(grid[0])):
if grid[i][j] == 1:
onePoints += [[i,j]]
return onePoints

def bfsWalk(grid, root):
q = []
q.append((root, 0))
found = False
visited = set()
while(len(q) > 0):
tup = q.pop(0)
curr = tup[0]
dist = tup[1]

if grid[curr[0]][curr[1]] <= 0:
grid[curr[0]][curr[1]] += dist

if (curr[0] - 1) >= 0 and grid[curr[0] -1][curr[1]] <= 0 and (curr[0] - 1, curr[1]) not in visited:
q.append(([curr[0] - 1, curr[1]], dist - 1))
visited.add((curr[0] - 1, curr[1]))
if (curr[0] + 1) < len(grid) and grid[curr[0] + 1][curr[1]] <= 0 and (curr[0] + 1, curr[1]) not in visited:
q.append(([curr[0] + 1, curr[1]], dist - 1))
visited.add((curr[0] + 1, curr[1]))
if (curr[1] - 1) >= 0 and grid[curr[0]][curr[1] - 1] <= 0 and (curr[0], curr[1] - 1) not in visited:
q.append(([curr[0], curr[1] - 1], dist - 1))
visited.add((curr[0], curr[1] - 1))
if (curr[1] + 1) < len(grid[0]) and grid[curr[0]][curr[1] + 1] <= 0 and (curr[0], curr[1] + 1) not in visited:
q.append(([curr[0], curr[1] + 1], dist - 1))
visited.add((curr[0], curr[1] + 1))

for i in range(len(grid)):
for j in range(len(grid[0])):
if (i, j) not in visited:
grid[i][j] = 3

return

最佳答案

将您的 targetsFound 变量更改为 set .您使用该变量的原因是查找单元格是否已被访问并且列表中的查找时间很慢 O(N)。集合支持快速查找 O(1),因此应该可以显着提高算法的性能。

有关 O(N) 和 O(1) 含义的更多信息:https://www.youtube.com/watch?v=v4cd1O4zkGw&t=1s

关于python - 优化算法以找到到所有建筑物的最短距离,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42935102/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com