gpt4 book ai didi

c# - Tarjan 算法的非递归版本

转载 作者:塔克拉玛干 更新时间:2023-11-03 05:42:09 27 4
gpt4 key购买 nike

我有以下 Tarjan 算法的(递归)实现来查找图中的强连通分量,它工作正常:

public class StronglyConnectedComponents
{
public static List<List<int>> Search(Graph graph)
{
StronglyConnectedComponents scc = new StronglyConnectedComponents();
return scc.Tarjan(graph);
}

private int preCount;
private int[] low;
private bool[] visited;
private Graph graph;
private List<List<int>> stronglyConnectedComponents = new List<List<int>>();
private Stack<int> stack = new Stack<int>();

public List<List<int>> Tarjan(Graph graph)
{
this.graph = graph;
low = new int[graph.VertexCount];
visited = new bool[graph.VertexCount];

for (int v = 0; v < graph.VertexCount; v++) if (!visited[v]) DFS(v);

return stronglyConnectedComponents;
}

public void DFS(int v)
{
low[v] = preCount++;
visited[v] = true;
stack.Push(v);
int min = low[v];
int edgeCount = graph.OutgoingEdgeCount(v);
for (int i = 0; i < edgeCount; i++)
{
var edge = graph.OutgoingEdge(v, i);
int target = edge.Target;

if (!visited[target]) DFS(target);
if (low[target] < min) min = low[target];
}

if (min < low[v])
{
low[v] = min;
return;
}

List<int> component = new List<int>();

int w;
do
{
w = stack.Pop();
component.Add(w);
low[w] = graph.VertexCount;
} while (w != v);
stronglyConnectedComponents.Add(component);
}
}

但是在大​​图上,递归版本显然会抛出 StackOverflowException。因此我想使算法成为非递归的。

我尝试用以下(非递归)函数替换函数 DFS,但该算法不再有效。有人可以帮忙吗?

private void DFS2(int vertex)
{
bool[] visited = new bool[graph.VertexCount];
Stack<int> stack = new Stack<int>();
stack.Push(vertex);
int min = low[vertex];

while (stack.Count > 0)
{
int v = stack.Pop();
if (visited[v]) continue;
visited[v] = true;

int edgeCount = graph.OutgoingEdgeCount(v);
for (int i = 0; i < edgeCount; i++)
{
int target = graph.OutgoingEdge(v, i).Target;
stack.Push(target);
if (low[target] < min) min = low[target];
}
}

if (min < low[vertex])
{
low[vertex] = min;
return;
}

List<int> component = new List<int>();

int w;
do
{
w = stack.Pop();
component.Add(w);
low[w] = graph.VertexCount;
} while (w != vertex);
stronglyConnectedComponents.Add(component);
}

下面的代码显示了测试:

public void CanFindStronglyConnectedComponents()
{
Graph graph = new Graph(8);
graph.AddEdge(0, 1);
graph.AddEdge(1, 2);
graph.AddEdge(2, 3);
graph.AddEdge(3, 2);
graph.AddEdge(3, 7);
graph.AddEdge(7, 3);
graph.AddEdge(2, 6);
graph.AddEdge(7, 6);
graph.AddEdge(5, 6);
graph.AddEdge(6, 5);
graph.AddEdge(1, 5);
graph.AddEdge(4, 5);
graph.AddEdge(4, 0);
graph.AddEdge(1, 4);

var scc = StronglyConnectedComponents.Search(graph);
Assert.AreEqual(3, scc.Count);
Assert.IsTrue(SetsEqual(Set(5, 6), scc[0]));
Assert.IsTrue(SetsEqual(Set(7, 3, 2), scc[1]));
Assert.IsTrue(SetsEqual(Set(4, 1, 0), scc[2]));
}

private IEnumerable<int> Set(params int[] set) => set;

private bool SetsEqual(IEnumerable<int> set1, IEnumerable<int> set2)
{
if (set1.Count() != set2.Count()) return false;
return set1.Intersect(set2).Count() == set1.Count();
}

最佳答案

这里是原始递归实现的直接非递归翻译(假设它是正确的):

public static List<List<int>> Search(Graph graph)
{
var stronglyConnectedComponents = new List<List<int>>();

int preCount = 0;
var low = new int[graph.VertexCount];
var visited = new bool[graph.VertexCount];
var stack = new Stack<int>();

var minStack = new Stack<int>();
var enumeratorStack = new Stack<IEnumerator<int>>();
var enumerator = Enumerable.Range(0, graph.VertexCount).GetEnumerator();
while (true)
{
if (enumerator.MoveNext())
{
int v = enumerator.Current;
if (!visited[v])
{
low[v] = preCount++;
visited[v] = true;
stack.Push(v);
int min = low[v];
// Level down
minStack.Push(min);
enumeratorStack.Push(enumerator);
enumerator = Enumerable.Range(0, graph.OutgoingEdgeCount(v))
.Select(i => graph.OutgoingEdge(v, i).Target)
.GetEnumerator();
}
else if (minStack.Count > 0)
{
int min = minStack.Pop();
if (low[v] < min) min = low[v];
minStack.Push(min);
}
}
else
{
// Level up
if (enumeratorStack.Count == 0) break;

enumerator = enumeratorStack.Pop();
int v = enumerator.Current;
int min = minStack.Pop();

if (min < low[v])
{
low[v] = min;
}
else
{
List<int> component = new List<int>();

int w;
do
{
w = stack.Pop();
component.Add(w);
low[w] = graph.VertexCount;
} while (w != v);
stronglyConnectedComponents.Add(component);
}

if (minStack.Count > 0)
{
min = minStack.Pop();
if (low[v] < min) min = low[v];
minStack.Push(min);
}
}
}
return stronglyConnectedComponents;
}

像往常一样,对于这种直接翻译,您需要一个显式堆栈来存储从递归调用“返回”后需要恢复的状态。在这种情况下,它是级别顶点枚举器和 min 变量。

请注意,现有的 stack 变量不能使用,因为当处理顶点被推到那里时,它并不总是在退出时弹出(递归实现中的 return 行) ,这是该算法的特定要求。

关于c# - Tarjan 算法的非递归版本,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46511682/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com