gpt4 book ai didi

java - avl树旋转

转载 作者:塔克拉玛干 更新时间:2023-11-03 05:26:47 25 4
gpt4 key购买 nike

我正在尝试做一棵 avl 树,每当树不平衡时它都会 self 更新。轮换工作但我有一个错误,如果例如树节点 7,leftChild 6,leftchild 5 的左 child 变成节点 6,leftchild 5,rightchild 7,并且在平衡后我添加一个新节点,该节点首先与7 而不是 6。我该如何解决这个问题?

这是主类:

import java.io.*;
import javax.swing.*;
import java.util.*;
import java.lang.*;

public class NewMain implements Cloneable{

/**
* @param args the command line arguments
*/
public static void main(String[] args)
{

File file = new File ("AVLTree.txt");
ArrayList <TreeNode> array = new ArrayList ();
Scanner kb = new Scanner (System.in);
int num = 0;
TreeNode root = new TreeNode ();
do {
System.out.print(" AVL Tree \n\n\n\n");
System.out.println("1. Create a new binary tree");
System.out.println("2. Save Tree");
System.out.println("3. Load Tree");
System.out.println("4. Enter a new node in the tree");
System.out.println("5. Show current AVL tree");
System.out.println("6. Show inorder traversal");
System.out.println("7. Search");
System.out.println("8. Quit \n\n\n\n\n\n\n");
System.out.print("Enter a number: ");
num = kb.nextInt ();
if (num == 1){
if (array.isEmpty ())
{
System.out.print ("Enter the root value: ");
int value = kb.nextInt ();
root = new TreeNode();
root.setValue(value);
array.add(root);
}
else
{
array.clear();
System.out.print ("Enter the root value: ");
int value = kb.nextInt ();
root = new TreeNode();
root.setValue(value);
array.add(root);
}
}
if (num == 2)
{
FileOutputStream outFile = null;
ObjectOutputStream oos = null;
try
{
outFile = new FileOutputStream(file);
oos = new ObjectOutputStream(outFile);
for (TreeNode list : array)
{
oos.writeObject(list);
}
oos.close();
}
catch (Exception e)
{
System.out.print("Save Not Successful!");
}
}
if (num == 3)
{
if (file.exists())
{
FileInputStream inFile = null;
ObjectInputStream ios = null;
try
{
Object obj = null;
inFile = new FileInputStream(file);
ios = new ObjectInputStream(inFile);
while ((obj = ios.readObject()) != null) {
if (obj instanceof TreeNode)
{
array.add((TreeNode) obj);
}
}
ios.close();
}
catch(EOFException e)
{
}
catch (Exception e)
{
System.out.print("File was not found while loading");
}
}
}
if (num == 4)
{
System.out.print ("Enter a new child node: ");
int value = kb.nextInt ();
try
{
array.add(root.insert(value));
root.balance();
}
catch (Exception e)
{
System.out.print (e.getMessage());
}

}
if (num == 5){
System.out.print ("Pointer Number\t\tLeft\t\tNode\t\tRight\t\tLeft Height\t\tRight Height\n");
for (int i=0; i<array.size();i++)
{
System.out.print (i+"\t\t\t"+array.indexOf(array.get(i).getLeftChild())+"\t\t"+array.get(i).getValue()+"\t\t"+array.indexOf(array.get(i).getRightChild())+"\t\t"+array.get(i).getLeftHeight()+"\t\t\t"+array.get(i).getRightHeight()+"\n");
}
}
if (num == 6)
{
System.out.print("Inorder traversal: ");
System.out.println(root.InOrderTraversal());
System.out.print("Postorder traversal: ");
System.out.println(root.PostOrderTraversal());
System.out.print("Preorder traversal: ");
System.out.println(root.PreOrderTraversal());
}
if (num == 7)
{
System.out.print("Enter node to be searched: ");
int node = kb.nextInt ();
for (int i = 0; i<array.size();i++)
{
if (node == array.get(i).getValue())
{
System.out.print ("Node is in index "+i+"\n");
break;
}
if (i == array.size()-1 && node != array.get(i).getValue())
{
System.out.print ("Node not found in the tree!"+"\n");
break;
}
}

}
}while (num != 8);
}
}

这是来自普通的 java 类:

import java.lang.StringBuilder;
import java.util.ArrayList;
import java.io.*;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.swing.*;
public class TreeNode implements Serializable, Cloneable
{
public Integer value;
public TreeNode leftChild;
public TreeNode rightChild;

public TreeNode()
{
this.value = null;
this.leftChild = null;
this.rightChild = null;
}

public TreeNode(int value)
{
this.value = value;
this.leftChild = null;
this.rightChild = null;
}

public int getValue()
{
return this.value;
}

public void setValue(int value)
{
this.value = value;
}

public TreeNode getLeftChild()
{
return this.leftChild;
}

public void setLeftChild(TreeNode leftChild)
{
this.leftChild = leftChild;
}

public TreeNode getRightChild()
{
return this.rightChild;
}

public void setRightChild(TreeNode rightChild)
{
this.rightChild = rightChild;
}

public int getLeftHeight()
{
if (this.leftChild == null)
{
return 0;
}
else
{
return this.getLeftChild().getHeight() + 1;
}

}

public int getRightHeight()
{
if (this.rightChild == null)
{
return 0;
}
else
{
return this.getRightChild().getHeight() + 1;
}
}

public TreeNode insert(int value) throws Exception
{
if(this.value == null && this.leftChild == null && this.rightChild == null)
{
this.value = value;
return this;
}
else
{
TreeNode node = new TreeNode (value);
if(value < this.value)
{
if(this.getLeftChild() == null)
{
this.setLeftChild (node);
return node;
}
else
{
return this.getLeftChild().insert(value);
}
}
else if(value > this.value)
{
if(this.getRightChild() == null)
{
this.setRightChild(node);
return node;
}

else
{
return this.getRightChild().insert(value);
}

}
else
{
return null;
}
}

}
public TreeNode balance() throws Exception
{
if (Math.abs(this.getLeftHeight() - this.getRightHeight())==2)
{
if (this.rightChild == null)
{
if(this.leftChild.leftChild != null)
{
return this.LLRotation ();
}
if(this.leftChild.rightChild != null)
{
return this.LRRotation ();
}
}
if (this.leftChild == null)
{
if (this.rightChild.rightChild != null)
{
return this.RRRotation ();
}
if (this.rightChild.leftChild != null)
{
return this.RLRotation ();
}
}
}
else
{
if (this.getLeftChild () != null)
{
return this.getLeftChild().balance();
}
if (this.getRightChild () != null)
{
return this.getRightChild().balance();
}
}
return this;
}
public int getHeight ()
{
if (this.leftChild == null && this.rightChild == null)
{
return 0;
}
else
{
int leftH = 0;
int rightH = 0;
if (this.leftChild != null)
{
leftH++;
leftH += this.getLeftChild().getHeight();
}
if (this.rightChild != null)
{
rightH++;
rightH += this.getRightChild().getHeight();
}
return Math.max(leftH,rightH);
}
}

public TreeNode LLRotation ()
{
TreeNode temp = this.leftChild;
this.leftChild = null;
temp.rightChild = this;
return temp;
}

public TreeNode RRRotation ()
{
TreeNode temp = this.rightChild;
this.rightChild = temp.leftChild;
try
{
temp.leftChild = (TreeNode)this.clone();
}
catch (CloneNotSupportedException ex)
{
}
this.value = temp.value;
this.rightChild = temp.rightChild;
this.leftChild = temp.leftChild;
return temp;
}

public TreeNode LRRotation ()
{
this.leftChild = this.leftChild.RRRotation();
return LLRotation();
}

public TreeNode RLRotation ()
{
this.rightChild = this.rightChild.RRRotation();
return RRRotation();
}

public String InOrderTraversal ()
{
StringBuilder sb = new StringBuilder ();
if (this.leftChild == null && this.rightChild == null)
{
sb.append(this.value).append(" ");
}
else
{
if(this.leftChild != null)
{
sb.append(this.getLeftChild().InOrderTraversal());
}
sb.append(this.value).append(" ");

if (this.rightChild != null)
{
sb.append(this.getRightChild().InOrderTraversal());
}
}
return sb.toString();
}
public String PostOrderTraversal ()
{
StringBuilder sb = new StringBuilder ();
if (this.leftChild == null && this.rightChild == null)
{
sb.append(this.value).append(" ");
}
else
{
if(this.leftChild != null)
{
sb.append(this.getLeftChild().PostOrderTraversal());
}
if (this.rightChild != null)
{
sb.append(this.getRightChild().PostOrderTraversal());
}
sb.append(this.value).append(" ");
}
return sb.toString();
}
public String PreOrderTraversal ()
{
StringBuilder sb = new StringBuilder ();
if (this.leftChild == null && this.rightChild == null)
{
sb.append(this.value).append(" ");
}
else
{
sb.append(this.value).append(" ");
if(this.leftChild != null)
{
sb.append(this.getLeftChild().PreOrderTraversal());
}
if (this.rightChild != null)
{
sb.append(this.getRightChild().PreOrderTraversal());
}
}
return sb.toString();
}
}

最佳答案

  1. 代码有点复杂,这是需要的。我希望在这里给你一个更简单的版本,它与你自己可以正确平衡。也许您最好在插入内部进行指针旋转/重新平衡。 不要觉得有义务给分;这只是答案的一半。

  2. 备注:字段value可能是 ìnt .

  3. 如果“this”对象可能为空,递归算法肯定更容易。这可以通过将整棵树包装在一个公共(public)类中来实现,该公共(public)类在内部使用 TreeNode 类。

    public class Tree {

    private static class TreeNode {
    private int value;
    private TreeNode left;
    private TreeNode right;

    private TreeNode(int value, TreeNode left, TreeNode right) {
    this.value = value;
    this.left = left;
    this.right = right;
    }
    }

    private static class AlreadyExistsException extends Exception {
    private TreeNode node;

    private AlreadyExistsException(TreeNode node) {
    this.node = node;
    }

    public TreeNode getNode() {
    return node;
    }
    }

    private TreeNode root;
    private int size;

    public boolean insert(int value) {
    try {
    root = insertInto(root, value);
    ++size;
    return true;
    } catch (AlreadyExistsException e) {
    // Fine.
    return false;
    }
    }

    private TreeNode insertInto(TreeNode node, int value) throws AlreadyExistsException {
    if (node == null) {
    return new TreeNode(value, null, null);
    }
    if (value < node.value) {
    node.left = insertInto(node.left, value);
    return node;
    } else if (value > node.value) {
    node.right = insertInto(node.right, value);
    return node;
    } else {
    throw new AlreadyExistsException(node);
    }
    }
    }
    1. 正如您在插入期间立即看到的平衡,可以在 < 处通过指针旋转完成插入。和 > (3 个指针:左边的最右边的叶子或右边的最左边的叶子)。从递归回来,我们可以收集左边最右边的叶子的父节点,并执行旋转。或者在任何其他时间点。存在 3 个变体!

关于java - avl树旋转,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/8632464/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com