- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我要对一个二分图进行一些归约,由两个密集的顶点数组和一个指定边是否存在于两者之间的密集数组表示。比方说,两个数组是 a0[] 和 a1[],所有边都像 e[i0][i1](即从 a0 中的元素到 a1 中的元素)。
有大约 100+100 个顶点和大约 100*100 条边,因此每个线程负责一条边。
对于 a0 中的每个顶点,我想找到连接到它的所有顶点(在 a1 中)的最大值,然后反过来:将结果分配给数组 b0,对于 a1 中的每个顶点,我想找到连接顶点的最大 b0[i0]。
为此,我:
1) 载入共享内存
#define DC_NUM_FROM_SHARED 16
#define DC_NUM_TO_SHARED 16
__global__ void max_reduce_down(
Value* value1
, Value* max_value_in_connected
, int r0_size, int r1_size
, bool** connected
)
{
int id_from;
id_from = blockIdx.x * blockDim.x + threadIdx.x;
id_to = blockIdx.y * blockDim.y + threadIdx.y;
bool within_bounds = (id_from < r0_size) && (id_to < r1_size);
//load into shared memory
__shared__ Value value[DC_NUM_TO_SHARED][DC_NUM_FROM_SHARED]; //FROM is the inner (consecutive) dimension
if(within_bounds)
value[threadIdx.y][threadIdx.x] = connected[id_to][id_from]? value1[id_to] : 0;
else
value[threadIdx.y][threadIdx.x] = 0;
__syncthreads();
if(!within_bounds)
return;
2)减少
for(int stride = DC_NUM_TO_SHARED/2; threadIdx.y < stride; stride >>= 1)
{
value[threadIdx.y][threadIdx.x] = max(value[threadIdx.y][threadIdx.x], dc[threadIdx.y + stride][threadIdx.x]);
__syncthreads();
}
3)写回
max_value_connected[id_from] = value[0][threadIdx.x];
类似的问题,但缩减只针对 a0 中的顶点,我需要找到 k 个最佳候选是从 a1 中的连接中选出的(k 是~5) .
1) 除了第一个位置之外,我用零个元素初始化共享数组
int id_from, id_to;
id_from = blockIdx.x * blockDim.x + threadIdx.x;
id_to = blockIdx.y * blockDim.y + threadIdx.y;
__shared Value* values[MAX_CHAMPS * CHAMPS_NUM_FROM_SHARED * CHAMPS_NUM_TO_SHARED]; //champion overlaps
__shared int* champs[MAX_CHAMPS * CHAMPS_NUM_FROM_SHARED * CHAMPS_NUM_TO_SHARED]; // overlap champions
bool within_bounds = (id_from < r0_size) && (id_to < r1_size);
int i = threadIdx.y * CHAMPS_NUM_FROM_SHARED + threadIdx.x;
if(within_bounds)
{
values[i] = connected[id_to][id_from] * values1[id_to];
champs[i] = connected[id_to][id_from] ? id_to : -1;
}
else
{
values[i] = 0;
champs[i] = -1;
}
for(int place = 1; place < CHAMP_COUNT; place++)
{
i = (place * CHAMPS_NUM_TO_SHARED + threadIdx.y) * CHAMPS_NUM_FROM_SHARED + threadIdx.x;
values[i] = 0;
champs[i] = -1;
}
if(! within_bounds)
return;
__syncthreads();
2) 减少它
for(int stride = CHAMPS_NUM_TO_SHARED/2; threadIdx.y < stride; stride >>= 1)
{
merge_2_champs(values, champs, CHAMP_COUNT, id_from, id_to, id_to + stride);
__syncthreads();
}
3) 将结果写回
for(int place = 0; place < LOCAL_DESIRED_ACTIVITY; place++)
champs0[place][id_from] = champs[place * CHAMPS_NUM_TO_SHARED * CHAMPS_NUM_FROM_SHARED + threadIdx.x];
如何对共享数组中的元素进行排序(转置),以便内存访问更好地使用缓存?在这一点上重要吗,或者我可以从其他优化中获得更多?如果我需要针对任务 2 进行优化,转置边缘矩阵会更好吗? (据我了解,任务 1 中存在对称性,因此无关紧要)。
我推迟了展开循环并在加载时进行第一次缩减迭代,因为我认为在我探索更简单的方法之前做起来太复杂了。
对于任务 2,最好不要加载零个元素,因为数组永远不需要增长,并且只有在完成 log k 步后才开始收缩。这将使它在共享内存中压缩 k 倍!但我害怕由此产生的索引数学。
不寻常的类型只是 typedef 的 ints/chars/etc - AFAIK,在 GPU 中,尽可能地压缩它们是有意义的。我还没有运行代码,不需要检查索引错误。
此外,我正在使用 CUDA,但我对 OpenCL 的观点也很感兴趣,因为我认为最好的解决方案应该是相同的,而且无论如何我将来都会使用 OpenCL。
最佳答案
好的,我想我明白了。
我正在考虑的两个备选方案是对 y 维度进行缩减,并独立于 x 维度,反之亦然(x 维度是连续的)。在任何情况下,调度程序都能够沿 x 维度将线程组装成 warp,因此可以保证一定的一致性。然而,让连贯性延伸到扭曲之外会很棒。此外,由于共享数组的 2D/3D 性质,人们必须将维度限制为 16 甚至 8。
为了确保 warp 内的合并,调度程序必须沿 x 维度组装 warp。
如果减少 x 维度,在每次迭代后,warp 中的事件线程数将减半。但是,如果减少 y 维度,则事件扭曲的数量将减半。
所以,我需要减少 y。
除非转置(加载)最慢,这是异常情况。
关于algorithm - 在 CUDA/OpenCL 中,哪种方式可以订购共享 2D/3D 阵列以并行缩减 1 维?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27414174/
Intel、AMD 和 Khronos OpenCL 之间有什么区别。我对 OpenCL 完全陌生,想从它开始。我不知道在我的操作系统上安装哪个更好。 最佳答案 OpenCL 是 C 和 C++ 语言
我在这里的一篇文章中看到,我们可以从 OpenCL 内核调用函数。但是在我的情况下,我还需要并行化该复杂函数(由所有可用线程运行),所以我是否必须将该函数也设为内核并像从主内核中调用函数一样直接调
最近我看到一些开发板支持 OpenCL EP,例如 odroid XU。我知道的一件事是 OpenCL EP 适用于 ARM 处理器,但它与基于主要桌面的 OpenCL 在哪些特性上有所不同。 最佳答
我想知道在 OpenCL 中设置为内核函数的参数数量是否有任何限制。设置参数时出现 INVALID_ARG_INDEX 错误。我在内核函数中设置了 9 个参数。请在这方面帮助我。 最佳答案 您可以尝试
我对零拷贝的工作原理有点困惑。 1-要确认以下内容对应于opencl中的零拷贝。 ....................... . . . .
我是 OpenCL 的初学者,我很难理解某些东西。 我想改进主机和设备之间的图像传输。 我制定了一个计划以更好地了解我。 顶部:我现在拥有的 |底部:我想要的 HtD(主机到设备)和 DtH(设备到主
今天我又加了四个 __local变量到我的内核以转储中间结果。但是只需将另外四个变量添加到内核的签名并添加相应的内核参数就会将内核的所有输出呈现为“0”。没有一个 cl 函数返回错误代码。 我进一步尝
我知道工作项被分组到工作组中,并且您不能在工作组之外进行同步。 这是否意味着工作项是并行执行的? 如果是这样,使用 128 个工作项创建 1 个工作组是否可能/有效? 最佳答案 组内的工作项将一起安排
我相当确定经纱仅在 CUDA 中定义。但也许我错了。就 OpenCL 而言,什么是扭曲? 它与工作组不一样,是吗? 任何相关的反馈都受到高度赞赏。谢谢! 最佳答案 它没有在 OpenCL 标准中定义。
已结束。此问题正在寻求书籍、工具、软件库等的推荐。它不满足Stack Overflow guidelines 。目前不接受答案。 我们不允许提出寻求书籍、工具、软件库等推荐的问题。您可以编辑问题,以便
在OpenCL中,我的理解是可以使用barrier()函数来同步工作组中的线程。我(通常)确实了解它们的用途以及何时使用它们。我还知道工作组中的所有线程都必须遇到障碍,否则会出现问题。然而,到目前为止
我的主板上有 Nvidia 显卡 (GeForce GT 640)。我已经在我的盒子上安装了 OpenCL。当我使用“clGetPlatformInfo(参数)”查询平台时,我看到以下输出:-#可用平
我目前正在构建一个 ray marcher 来查看像 mandelbox 等东西。它工作得很好。但是,在我当前的程序中,它使用每个 worker 作为从眼睛转换的光线。这意味着每个 worker 有大
我编写了两个不同的 openCl 内核,使用 nvidia profiler 获取了有关它们的一些信息,发现两者每个工作项都使用 63 个寄存器。 我尝试了一切我能想到的方法来降低这个数字(用 ush
我的主板上有 Nvidia 显卡 (GeForce GT 640)。我已经在我的盒子上安装了 OpenCL。当我使用“clGetPlatformInfo(参数)”查询平台时,我看到以下输出:-#可用平
我目前正在构建一个 ray marcher 来查看像 mandelbox 等东西。它工作得很好。但是,在我当前的程序中,它使用每个 worker 作为从眼睛转换的光线。这意味着每个 worker 有大
我正在尝试使用 OpenCL 加速一些计算,算法的一部分包括矩阵求逆。是否有任何开源库或免费可用的代码来计算用 OpenCL 或 CUDA 编写的矩阵的 lu 分解(lapack dgetrf 和 d
我正在尝试在 OpenCL 内核中使用递归。编译成功,但运行时出现编译错误,所以我想知道,由于 CUDA 现在支持动态并行,OpenCL 是否支持动态并行? 最佳答案 OpenCL 不支持递归。请参阅
考虑以下代码,它从大小为 size 的 double 组创建缓冲区内存对象: coef_mem = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM
OpenCL 中目标平台的示例是什么?例如,它是 Windows、Android、Mac 等操作系统,还是设备中的实际芯片? 最佳答案 OpenCL 平台本质上是一个 OpenCL 实现。它与操作系统
我是一名优秀的程序员,十分优秀!