- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我正在实现 this kNN Octave 中的算法。
函数本身是这样声明的
function [classified, k, dist, idx] = fastKNN(trained, unknown, k, distance)
我的数据集是这样的:
%lat, lng, area, buildyear, price
54.6, 24.7, 23.6, 1965, 100000.00
54.6, 24.7, 13.6, 1964, 50000.00
...
我有 2 个问题。
问题 1:如何为数据集变量添加权重。例如,区域的权重比坐标大得多。
问题 2:如果设置 k=3,算法会返回最近的 3 个邻居的平均价格还是从 3 个中选择一个? - 我猜这与我正在学习的算法更相关。
谢谢!
最佳答案
要对某个特征赋予更多权重,您可以将给定特征乘以某个值。
这相当于沿着各自的维度拉伸(stretch)空间,有效地在计算距离时更加强调各自特征的变化。
fastKnn您提到的函数使用最近的 k 个邻居的“模式”(即最频繁的值)。这适用于分类(您有几个要预测的类),但对您的情况不是很有用。
对于回归,取最近邻值的平均值是一个不错的选择。
关于algorithm - 如何在 Octave 中使用 kNN 为数据集变量添加权重?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45755024/
library(ISLR) standardized.X=scale(Caravan [,-86]) test =1:1000 train.X=standardized.X[-test ,] test
这可能是一个愚蠢的问题,但我只是想知道在 scikit.ml 中实现的 ML-KNN 与 scikit-learn 的 KNeighborsClassifier 之间的区别是什么。根据sklearn'
我担心我的预测与测试的准确性,这完全有意义。 X_train , X_test, y_train ,y_test =train_test_split(iris_dataset['data'], iri
我已经开始在 python tensorflow 库上使用 K-Nearest-Neighbors 方法开发一个机器学习项目。我没有使用tensorflow工具的经验,所以我在github上找到了一些
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 KNN算法的工作原理简单直观,易于理解和实现,这使得它在各种应用场景
我试图在 R 中使用 knn(使用了几个包( knnflex , class ))来预测基于 8 个变量的违约概率。数据集大约有 100k 行 8 列,但我的机器似乎很难处理 10k 行的样本。在数据
我有一个 60.000 obs/40 变量数据集,我在其中使用了 Clara,主要是由于内存限制。 library(cluster) library(dplyr) mutate(kddne
我尝试运行这条线: knn(mydades.training[,-7],mydades.test[,-7],mydades.training[,7],k=5) 但我总是收到这个错误: Error in
我正在尝试使用 python 实现 k-近邻算法。我最终得到了以下代码。但是,我正在努力寻找最近邻居项目的索引。以下函数将返回距离矩阵。但是,我需要在features_train(算法的输入矩阵)中获
我正在使用Kobe Bryant Dataset 。我希望用 KnnRegressor 预测 shot_made_flag。 我使用game_date来提取year和month特征: # covert
在 kNN classifier 的文档中,有一个方法kneighbors ,返回 k 个最近邻居。我感兴趣的是如何优雅地返回此类分类器中的 k 个最远邻居? 最佳答案 不,没有这样的能力。 您需要记
我想优化 KNN。关于SVM、RF和XGboost的内容有很多;但对于 KNN 来说很少。 据我所知,邻居的数量是一个需要调整的参数。 但是还有哪些参数需要测试呢?有什么好的文章吗? 谢谢 最佳答案
我正在尝试使用具有两列的数据集进行词袋问题 - 摘要和解决方案。我正在使用 KNN。训练数据集有 91 列,测试数据集有 15 列。 为了生成向量,我使用以下代码。 vectorizer = Coun
我了解 k 最近邻 (KNN) 的工作原理,但我不熟悉“软投票”一词。与 KNN 相关的软投票是什么?它与标准 KNN 投票相比如何工作? 比较两种投票方案的简单示例会很有用,并且指向 Matlab
我正在尝试将 KNN 应用到 tips 数据集 并将对象映射如下: f.Male=df.Gender.map({'Female':0,'Male':1}) df.Smokes = df.Smoker.
在下面的代码(最后一行)中,根据文档使用了 X_test 和 y_test: Returns the mean accuracy on the given test data and label 问题
我有约 65 个特征、450k 个观察值和不平衡的分类响应变量 Y(约 5% 真实,2 个状态)的 df。这已通过 train_test_split 分为 {Xtrain, ytrain} (10%)
为什么在 KNN 中需要规范化?我知道这个过程标准化了所有特征对结果的影响,但是在标准化之前到特定点 V 的“K”最近点将与到该特定点的“K”最近点完全相同归一化后的 V。那么归一化对欧氏距离有何影响
我目前正在为我的人工智能考试做一个机器学习项目。目标是使用 WEKA 正确选择两种分类算法进行比较,请记住,这两种算法必须有足够的不同才能进行比较。此外,算法必须同时处理标称数据和数字数据(我想这是进
进行数据挖掘时,什么时候应该选择其中一种算法而不是另一种?有具体原因吗?另外,其中哪一个是最有效的? 我将给出一个表格作为示例。 最佳答案 一种选择方法是尝试所有这些并选择最好的。 如果我要尝试构建数
我是一名优秀的程序员,十分优秀!