- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
多项式幂的最佳方法是什么?是遵循采用 O(?) 的多项式定理 ( wikipedia ) 还是通过 FFT(快速傅立叶变换)然后使用 O((N*log(N))^2) 进行逆 FFT?
最佳答案
FFT(如果您需要经常执行此操作)或对大型多项式执行此操作。朴素乘法算法是O(N^2),而FFT是O(N log(N))。
这里有一些简洁的应用程序的更好解释:JeffE FFT
关于algorithm - 多项式的 n 次方算法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/20751241/
所以我想创建一个程序,当用户输入值 c 且 a = 1 时,打印出可因式分解的二次方程。程序应确定 b 的所有可能的整数值,以便三项式以 x^2 + bx + c 的形式打印出来 一个例子是,如果用户
我有自己定义的多项式类,它是系数列表的形式。 有点像 axˆ2 + bx + c is equals to [c, b, a] (for ax + b == [b, a] similarly, for
我必须制作一个对多项式执行运算的 GUI,但我不断收到无法摆脱的 NullPointerExceptions。在输出上它没有显示任何内容。我尝试调试我的程序,据我所知,我从键盘插入的多项式在某种程度上
numpy.lib.polynomial.polyval 允许您使用另一个多项式评估多项式: numpy.polyval(poly1d([1, 2, 3]), 2) Out[832]: 11 nump
如果我想计算多项式,如何在 C 中定义具有可变数量参数的函数?我的函数必须有这个参数:第一个参数:float x,第二个:int n,其余的 float (系数)。非常感谢! 最佳答案 用 varia
我正在尝试求多项式的不定积分,但是我的数学和编码都不是很好。我的代码可以编译,但我相信我的公式有误: Polynomial Polynomial :: indefiniteIntegral() co
我有 3 个数据集。 2 表示多项式本身(我们称它们为 x 和 y),1 表示函数值(它将是 z)。 多项式看起来像这样(假设两个维度的幂都是 3): z = a00 + a01*x + a02*x^
如何在 python 中计算最佳拟合线,然后将其绘制在 matplotlib 中的散点图上? 我使用普通最小二乘回归计算线性最佳拟合线如下: from sklearn import linear_mo
我正在尝试分解 bool 多项式以获得逻辑网络的最小形式。我的变量是 a1、a2、a3 ... 以及负对应项 na1、na2、na3 ... 如果需要一个函数 f = a1*a2*b2*nb1 + a
长话短说 如何使用系数数组构建表达式并将其转换为 Func ?有没有比表达式树更好的方法? 我有一个使用 Func formula 构造的不可变序列类型用于为序列 A 生成术语 An。我开始构建一个辅
我在我的 Mac OS Sierra 上运行 Spark 2.1.1(这应该有帮助)。我尝试在网上找到的测试数据集上拟合多项式逻辑回归,我在此处报告前几行(我不知道如何在此处附加文件): 1,0,24
我必须构建一个从类 lista(列表)继承的类多项式(polinom)。我必须从多项式类中加、减、乘、除 2 个对象。我有这段代码。我不明白为什么我的析构函数不工作。我还必须重载运算符:+、-、> 但
我有一个 Polynomial类,我正在尝试定义 operator++ ,递增前和递增后,以及尝试定义递减前和递减后,即 operator-- .这是我的代码片段: class Polynomial
我是编程新手(Python 是我的第一语言),但我喜欢设计算法。我目前正在研究方程组(整数),但找不到任何解决我的特定问题的引用。 让我解释一下。 我有一个等式(一个测试,如果你愿意的话): raw_
我正在尝试使用 scipy.stats (python) 中的 multinominal.pmf 函数。 当我在输入中所有概率都大于零的情况下使用此函数时,它工作正常。问题是当我想在其中一个概率为零时
我想用 0xA001 多项式计算字节数组的 CRC-16 校验和。但我真的不知道如何在 Java 中做到这一点,以及如何使用给定的多项式。它是某种特殊值(0xA001)吗?你能告诉我一个可以为我计算校
由于我的分类器在测试数据上产生了大约 99% 的准确率,我有点怀疑并想深入了解我的 NB 分类器最有用的特征,看看它正在学习什么样的特征。以下主题非常有用:How to get most inform
如 McFadden (1978)表明,如果多项 logit 模型中的备选方案数量大到无法计算,则通过对备选方案进行随机子集来获得一致估计仍然是可行的,因此每个个体的估计概率基于所选备选方案和 C其他
我现在有一些离散点,我使用 scipy.interpolate.splprep () 函数(B 样条插值)对其进行插值,以获得令人满意的平滑曲线。这是代码(借鉴另一个问题的答案)和我得到的结果。 im
我在 IPython notebook 中有一些多项式 x: import numpy as np x = np.polynomial.polynomial.Polynomial([1,2,3]) x
我是一名优秀的程序员,十分优秀!