gpt4 book ai didi

python - 无法正确识别 4 维解空间中的 Pareto 观测值

转载 作者:塔克拉玛干 更新时间:2023-11-03 05:06:04 25 4
gpt4 key购买 nike

我正在使用具有 4 个适应度函数的遗传算法。我有一个文件,其中每一行都列出了单个解决方案的适应度值。遗传算法的目的是最大化这些值。

我需要从文件中列出的解决方案中找出非支配解决方案。我有一个名为“identify_pareto_observations”的函数,用于识别遗传算法输出的非支配解。但是,我所得到的结果不正确。我在下面发布了一些代码,代表我的程序中的内容。我希望有人可以帮助我确定我要去哪里错了。如果有人能简单地解释在 4 维解空间中识别非支配解的过程,那就太好了!

请注意,我很难理解我找到的解释如何识别非支配解决方案的伪代码,所以我只是使用了我找到的代码 here .

感谢您的帮助/时间!

import os
import sys
import numpy as np

fitness_observations_matrix = []
fitness_observations_matrix.append([-447.117,928641,-0,4131.33])
fitness_observations_matrix.append([-838.066,977440,-0,3859.25])
fitness_observations_matrix.append([-803.34,385226,-0,4799.27])
fitness_observations_matrix.append([-790.052,4919.54,-0,6672])
fitness_observations_matrix.append([-403.629,1.9091e+06,-0.775081,3011.89])
fitness_observations_matrix.append([-99.4555,413201,-0,7615.26])
fitness_observations_matrix.append([-78.8706,9472.03,-0,7071.58])
fitness_observations_matrix.append([-1096.82,127109,-0,7227.28])
fitness_observations_matrix.append([-1058.26,1.97533e+06,-0,4959.18])
fitness_observations_matrix.append([-1324.52,2.56381e+06,-2.66017,2669.81])
fitness_observations_matrix.append([-815.861,247594,-0,4674.39])
fitness_observations_matrix.append([-370.815,1.41723e+06,-0,6036.94])
fitness_observations_matrix.append([-202.34,1.21506e+06,-0,3587.2])
fitness_observations_matrix.append([-718.299,3.0879e+06,-0,3903.51])
fitness_observations_matrix.append([-1514.39,2.62657e+06,-0,6960.03])
fitness_observations_matrix.append([-815.018,414420,-0,-0])
fitness_observations_matrix.append([-747.015,2.5201e+06,-0.913635,7153])
fitness_observations_matrix.append([-246.017,683330,-0,10110.5])
fitness_observations_matrix.append([-5884.85,1.40051e+07,-8.74525,3037.08])
fitness_observations_matrix.append([-4045.09,5.83051e+06,-1.99262,4397.97])

def identify_pareto_observations(fitness_observations):

#Convert to np array
np_array_fitness_observations = np.array(fitness_observations)

#Sort on first dimension
np_array_fitness_observations = np_array_fitness_observations[np_array_fitness_observations[:,0].argsort()]

# Add first row to pareto_frontier
np_pareto_frontier = np_array_fitness_observations[0:1,:]

# Test next row against the last row in pareto_frontier
for row in np_array_fitness_observations[1:,:]:
if sum([row[x] >= np_pareto_frontier[-1][x] for x in range(len(row))]) == len(row):
# If it is better on all features add the row to pareto_frontier
np_pareto_frontier = np.concatenate((np_pareto_frontier, [row]))

#Return
print(np_pareto_frontier)

identify_pareto_observations(fitness_observations_matrix)

最佳答案

如果存在一个解决方案 y,其中 y 不比 x 差,则解决方案 x 是帕累托支配的在任何方面,并且在某些方面严格来说更好。我假设您正在尝试在所有方面最小化您的问题。然后你可以采取以下方法(你发布的代码有类似的风格,但有很多问题):

  1. 按所有维度对数据进行排序(按升序排列)(例如,首先按维度 1 排序,对于具有相同维度 1 值的解决方案按维度 2 排序,对于具有相同维度 1 和 2 值的解决方案按维度 3 排序, ...)。这可以通过 numpy.lexsort 函数高效地执行。请注意,在此排序列表中,任何元素都不能被列表中后面的元素支配。
  2. 将您的帕累托非支配解决方案集 np_pareto_frontier 初始化为第一个排序元素。由于步骤 1 中的排序,我们知道它是帕累托非支配的。
  3. 按顺序循环遍历排序列表,如果 np_pareto_frontier 中没有任何解决方案支配,则将一行添加到 np_pareto_frontier -- 因为这些元素不受 np_pareto_frontier 中的任何支配np_pareto_frontier 并且不被排序列表中后面的任何东西支配,它们必须是 pareto 非支配的。

下面是这种方法的实现:

import numpy as np
def identify_pareto_observations(fitness_observations):
np_array_fitness_observations = np.array(fitness_observations)
np_array_fitness_observations = np_array_fitness_observations[np.lexnp_array_fitness_observations[:,0].argsort()]
np_pareto_frontier = np_array_fitness_observations[[0],:]
for row in np_array_fitness_observations[1:,:]:
dominated = False
for nondom in np_pareto_frontier:
if all([row[x] > nondom[x] for x in range(len(row))]):
dominated = True
break
if not dominated:
np_pareto_frontier = np.concatenate((np_pareto_frontier, [row]))
return np_pareto_frontier

我们可以在您的数据集上对其进行测试:

print identify_pareto_observations(fitness_observations_matrix)
# [[ -8.15018000e+02 4.14420000e+05 0.00000000e+00 0.00000000e+00]
# [ -1.32452000e+03 2.56381000e+06 -2.66017000e+00 2.66981000e+03]
# [ -4.03629000e+02 1.90910000e+06 -7.75081000e-01 3.01189000e+03]
# [ -5.88485000e+03 1.40051000e+07 -8.74525000e+00 3.03708000e+03]
# [ -2.02340000e+02 1.21506000e+06 0.00000000e+00 3.58720000e+03]
# [ -8.38066000e+02 9.77440000e+05 0.00000000e+00 3.85925000e+03]
# [ -4.47117000e+02 9.28641000e+05 0.00000000e+00 4.13133000e+03]
# [ -4.04509000e+03 5.83051000e+06 -1.99262000e+00 4.39797000e+03]
# [ -8.15861000e+02 2.47594000e+05 0.00000000e+00 4.67439000e+03]
# [ -8.03340000e+02 3.85226000e+05 0.00000000e+00 4.79927000e+03]
# [ -1.05826000e+03 1.97533000e+06 0.00000000e+00 4.95918000e+03]
# [ -3.70815000e+02 1.41723000e+06 0.00000000e+00 6.03694000e+03]
# [ -7.90052000e+02 4.91954000e+03 0.00000000e+00 6.67200000e+03]
# [ -1.51439000e+03 2.62657000e+06 0.00000000e+00 6.96003000e+03]
# [ -7.88706000e+01 9.47203000e+03 0.00000000e+00 7.07158000e+03]
# [ -7.47015000e+02 2.52010000e+06 -9.13635000e-01 7.15300000e+03]
# [ -1.09682000e+03 1.27109000e+05 0.00000000e+00 7.22728000e+03]
# [ -9.94555000e+01 4.13201000e+05 0.00000000e+00 7.61526000e+03]
# [ -2.46017000e+02 6.83330000e+05 0.00000000e+00 1.01105000e+04]]

正如我们所见,您只有一个帕累托支配的解决方案,行 [ -7.18299000e+02 3.08790000e+06 0.00000000e+00 3.90351000e+03]。它由 [ -1.32452000e+03 2.56381000e+06 -2.66017000e+00 2.66981000e+03] 行控制

关于python - 无法正确识别 4 维解空间中的 Pareto 观测值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/23624343/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com