- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
给定一个无向图,找到该图中所有多边形的算法是什么?这是一个带有彩色多边形的示例图。
注意有一个多边形 ABCIHGJKLMLKA,其中包含节点 KLM,但多边形 CDEG 不包含 F。
我已经阅读了此问题的解决方案,但没有我所拥有的叶要求。先前解决方案中存在的一些公理是每条边仅使用两次,但是死胡同边总共需要遍历四次。也就是说,存在一个包含所有外部节点 ABCDEFGJKLMLKA 的多边形,但它被丢弃,因为它是面向外的。
这里描述了一个类似问题的解决方案,没有叶子:http://blog.reactoweb.com/2012/04/algorithm-101-finding-all-polygons-in-an-undirected-graph/
更新
似乎链接的解决方案没有按预期工作,举例说明:
该算法将遍历图 A-B-C-A-E-D-C,识别三角形 ABC,但也不是预期的多边形 CAEDC
更新 2
这个问题实际上有一个简单的解决方案:删除包含其他多边形点的较大多边形。
最佳答案
step | description
1a | while vertices with deg(v) = 0 exist
1b | mark vertices with deg(v) = 0 as leaf
|
2 | run algorithm on all vertices which are not marked as leaf
|
3a | for each vertex marked as leaf
3b | if vertex is inside a polygon
3c | check its edges // you have to decide what to do in which case
3d | adjust polygon
我会用你的例子来说明这一点:
step | result
1a | find F and M
1b | mark F and M as leaf
1a | find L
1b | mark L as leaf
1a | find nothing: go to step 2
|
2 | finds polygons: AKJGHICB (1), CIHG (2), and CGED (3)
|
3a | we have F, M, and L
3b | check F:
| poly (1): cast ray: even result -> outside
| poly (2): cast ray: even result -> outside
| poly (3): cast ray: even result -> outside
| since F is always outside: no further action needed, unmark F
3b* | check M:
| poly (1): cast ray: odd result -> inside
| since M is inside a polygon: check how to add it
3c | check edge M-L:
| check if L is part of poly (1)
| if yes: add path to poly (1) (step 3d)
| if no: check if L is inside poly (1)
| -> no check L: odd result -> inside
| if inside: follow path, i.e. step 3c with edge L-K
| if outside: undefined behaviour
| -> inside
3c | check edge L-K:
| check if K is part of poly (1)
| -> yes: add path to poly
3d | Take poly (1) AKJGHICB
| replace K with KLK
| unmark K // note that K was never marked)
| remove K from path
| replace L with LML
| unmark L
| remove L from path
| unmark M // note that you should check if there are more
| // vertices to come for the replacement
| remove M from path
| poly (1) is now AKLMLKJGHICB
3a | we have no marked vertices left
| finish
* note that in step 3b we could first have found L/checked L. Then it would be like this:
3b | check L:
| poly (1): cast ray: odd result -> inside
| since L is inside a polygon: check how to add it
3c | check L-K (or M-L, that would work as above and eventually try L-K)
| check if K is part of poly (1)
| if yes: add path to poly (1)
| -> yes
3d | Take poly (1) AKJGHICB
| replace K with KLK
| unmark K
| remove K from path
| unmark L
| remove L from path
| poly (1) is now AKLKJGHICB
3a | we have M left // from now on a bit less detailed because it's the same again
3b | check M:
| poly (1): cast ray: odd result -> inside
| ...
3c | check M-L
| L is part of poly (1)
3d | replace L in the poly with LML and unmark L and M
| finish
这应该是您已经熟悉的算法应该如何工作的粗略概念。但是,它可能会进行许多改进。
关于algorithm - 如何找到无向图中的所有多边形?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/25335509/
我在一本书(Interview Question)中读到这个问题,想在这里详细讨论这个问题。请点亮它。 问题如下:- 隐私和匿名化 马萨诸塞州集团保险委员会早在 1990 年代中期就有一个绝妙的主意
我最近接受了一次面试,面试官给了我一些伪代码并提出了相关问题。不幸的是,由于准备不足,我无法回答他的问题。由于时间关系,我无法向他请教该问题的解决方案。如果有人可以指导我并帮助我理解问题,以便我可以改
这是我的代码 public int getDist(Node root, int value) { if (root == null && value !=0) return
就效率而言,Strassen 算法应该停止递归并应用乘法的最佳交叉点是多少? 我知道这与具体的实现和硬件密切相关,但对于一般情况应该有某种指南或某人的一些实验结果。 在网上搜索了一下,问了一些他们认为
我想学习一些关于分布式算法的知识,所以我正在寻找任何书籍推荐。我对理论书籍更感兴趣,因为实现只是个人喜好问题(我可能会使用 erlang(或 c#))。但另一方面,我不想对算法进行原始的数学分析。只是
我想知道你们中有多少人实现了计算机科学的“ classical algorithms ”,例如 Dijkstra's algorithm或现实世界中的数据结构(例如二叉搜索树),而不是学术项目? 当有
我正在解决旧编程竞赛中的一些示例问题。在这个问题中,我们得到了我们有多少调酒师以及他们知道哪些食谱的信息。制作每杯鸡尾酒需要 1 分钟,我们需要使用所有调酒师计算是否可以在 5 分钟内完成订单。 解决
关闭。这个问题是opinion-based .它目前不接受答案。 想要改进这个问题? 更新问题,以便 editing this post 可以用事实和引用来回答它. 关闭 8 年前。 Improve
我开始学习 Nodejs,但我被困在中间的某个地方。我从 npm 安装了一个新库,它是 express -jwt ,它在运行后显示某种错误。附上代码和错误日志,请帮助我! const jwt = re
我有一个证书,其中签名算法显示“sha256rsa”,但指纹算法显示“sha1”。我的证书 SHA1/SHA2 的标识是什么? 谢谢! 最佳答案 TL;TR:签名和指纹是完全不同的东西。对于证书的强度
我目前在我的大学学习数据结构类(class),并且在之前的类(class)中做过一些算法分析,但这是我在之前的类(class)中遇到的最困难的部分。我们现在将在我的数据结构类(class)中学习算法分
有一个由 N 个 1x1 方格组成的区域,并且该区域的所有部分都是相连的(没有任何方格无法到达的方格)。 下面是一些面积的例子。 我想在这个区域中选择一些方块,并且两个相邻的方块不能一起选择(对角接触
我有一些多边形形状的点列表,我想将其包含在我页面上的 Google map 中。 我已经从原始数据中删除了尽可能多的不必要的多边形,现在我剩下大约 12 个,但它们非常详细以至于导致了问题。现在我的文
我目前正在实现 Marching Squares用于计算等高线曲线,我对此处提到的位移位的使用有疑问 Compose the 4 bits at the corners of the cell to
我正在尝试针对给定算法的约束满足问题实现此递归回溯函数: function BACKTRACKING-SEARCH(csp) returns solution/failure return R
是否有包含反函数的库? 作为项目的一部分,我目前正在研究测向算法。我正在使用巴特利特相关性。在 Bartlett 相关性中,我需要将已经是 3 次矩阵乘法(包括 Hermitian 转置)的分子除以作
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 这个问题似乎与 help center 中定义的范围内的编程无关。 . 关闭 8 年前。 Improve
问题的链接是UVA - 1394 : And There Was One . 朴素的算法是扫描整个数组并在每次迭代中标记第 k 个元素并在最后停止:这需要 O(n^2) 时间。 我搜索了一种替代算法并
COM 中创建 GUID 的函数 (CoCreateGUID) 使用“分散唯一性算法”,但我的问题是,它是什么? 谁能解释一下? 最佳答案 一种生成 ID 的方法,该 ID 具有一定的唯一性保证,而不
在做一个项目时我遇到了这个问题,我将在这个问题的实际领域之外重新措辞(我想我可以谈论烟花的口径和形状,但这会使理解更加复杂).我正在寻找一种(可能是近似的)算法来解决它。 我有 n 个不同大小的容器,
我是一名优秀的程序员,十分优秀!