- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我喜欢在有向图中(有时可能有环)找到最小生成树(甚至森林)。一个解释here有一些错误。这个算法在 Python 中是否有任何实际有效的包/代码?
最佳答案
虽然我没用过,here是来自 GitHub 的实现。我在下面附上了它的本质。由于它是 GitHub 存储库,它可能会更改,因此最好使用那里的代码。如果您使用这个,请注明作者:Martin-Louis Bright .
import sys
def _input(filename):
prices = {}
names = {}
for line in file(filename).readlines():
(name, src, dst, price) = line.rstrip().split()
name = int(name.replace('M',''))
src = int(src.replace('C',''))
dst = int(dst.replace('C',''))
price = int(price)
t = (src,dst)
if t in prices and prices[t] <= price:
continue
prices[t] = price
names[t] = name
return prices,names
def _load(arcs,weights):
g = {}
for (src,dst) in arcs:
if src in g:
g[src][dst] = weights[(src,dst)]
else:
g[src] = { dst : weights[(src,dst)] }
return g
def _reverse(graph):
r = {}
for src in graph:
for (dst,c) in graph[src].items():
if dst in r:
r[dst][src] = c
else:
r[dst] = { src : c }
return r
def _getCycle(n,g,visited=set(),cycle=[]):
visited.add(n)
cycle += [n]
if n not in g:
return cycle
for e in g[n]:
if e not in visited:
cycle = _getCycle(e,g,visited,cycle)
return cycle
def _mergeCycles(cycle,G,RG,g,rg):
allInEdges = []
minInternal = None
minInternalWeight = sys.maxint
# find minimal internal edge weight
for n in cycle:
for e in RG[n]:
if e in cycle:
if minInternal is None or RG[n][e] < minInternalWeight:
minInternal = (n,e)
minInternalWeight = RG[n][e]
continue
else:
allInEdges.append((n,e))
# find the incoming edge with minimum modified cost
minExternal = None
minModifiedWeight = 0
for s,t in allInEdges:
u,v = rg[s].popitem()
rg[s][u] = v
w = RG[s][t] - (v - minInternalWeight)
if minExternal is None or minModifiedWeight > w:
minExternal = (s,t)
minModifiedWeight = w
u,w = rg[minExternal[0]].popitem()
rem = (minExternal[0],u)
rg[minExternal[0]].clear()
if minExternal[1] in rg:
rg[minExternal[1]][minExternal[0]] = w
else:
rg[minExternal[1]] = { minExternal[0] : w }
if rem[1] in g:
if rem[0] in g[rem[1]]:
del g[rem[1]][rem[0]]
if minExternal[1] in g:
g[minExternal[1]][minExternal[0]] = w
else:
g[minExternal[1]] = { minExternal[0] : w }
def mst(root,G):
RG = _reverse(G)
if root in RG:
RG[root] = {}
g = {}
for n in RG:
if len(RG[n]) == 0:
continue
minimum = sys.maxint
s,d = None,None
for e in RG[n]:
if RG[n][e] < minimum:
minimum = RG[n][e]
s,d = n,e
if d in g:
g[d][s] = RG[s][d]
else:
g[d] = { s : RG[s][d] }
cycles = []
visited = set()
for n in g:
if n not in visited:
cycle = _getCycle(n,g,visited)
cycles.append(cycle)
rg = _reverse(g)
for cycle in cycles:
if root in cycle:
continue
_mergeCycles(cycle, G, RG, g, rg)
return g
if __name__ == "__main__":
try:
filename = sys.argv[1]
root = sys.argv[2]
except IndexError:
sys.stderr.write('no input and/or root node specified\n')
sys.stderr.write('usage: python edmonds.py <file> <root>\n')
sys.exit(1)
prices,names = _input(filename)
g = _load(prices,prices)
h = mst(int(root),g)
for s in h:
for t in h[s]:
print "%d-%d" % (s,t)
关于python - Chu-Liu Edmond 算法(用于有向图),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38771622/
我正在尝试更详细地了解 Edmonds-Karp 算法,并且很想知道它使用什么算法计算每次迭代中从 s 到 t 的最短路径(最少边数) 最佳答案 广度优先搜索。您可能想阅读 Wikipedia ent
我在整个互联网上进行了搜索,试图找到 PHP 示例代码,但我无法找到。我想做的是将类(class)与房间匹配,类(class)有一组与之兼容的房间。 示例:类(class) A 可以在 X、Y 和 Z
我会实现 Edmond Karp algorithm ,但它似乎不正确,我没有得到正确的流程,请考虑下图和从 4 到 8 的流程: 算法运行如下: 首先找到4→1→8,然后找到4→5→8之后4→1→6
我使用在 Edmonds–Karp 算法维基页面中找到的伪代码实现了 Edmonds–Karp 算法:http://en.wikipedia.org/wiki/Edmonds%E2%80%93Karp
我正在为一个有向图实现这个算法。但有趣的是,这个图节点也有自己的流量。我认为,必须以特殊的方式处理原始问题的这种细微变化。因为,在最初的最大流问题中,可以找到从头到尾的任何路径(实际上,在 Edmon
我正在尝试实现 Edmonds-Karp在 C++ 中以获得最大流量,我写的略有不同: 我没有遍历残差图中的所有边,而是使用邻接表仅遍历了原始图中存在的边。 在用最小流量更新残差图时,我没有更新任何后
我想在加权有向图上找到最小生成树 (MST)。我一直在尝试使用 Chu-Liu/Edmond's algorithm ,我已经用 Python 实现了(下面的代码)。可以找到对该算法的简单、清晰的描述
我喜欢在有向图中(有时可能有环)找到最小生成树(甚至森林)。一个解释here有一些错误。这个算法在 Python 中是否有任何实际有效的包/代码? 最佳答案 虽然我没用过,here是来自 GitHub
在深入探讨这个问题之前,先了解一下我已有的一些背景信息: -我首先创建了一个基于美国各城市的无向邻接矩阵图,边权重为计算的距离(通过距离公式实现)。 -我还使用 prim 算法实现了最小生成树。 现在
我有一些简单的 Java/JUNG 代码,可以创建有向图,添加一些带有权重和容量值的边,并运行从源节点到汇节点的最大流量分析。 如果你有:A --- (capacity 2) -----> B ---
我是一名优秀的程序员,十分优秀!