gpt4 book ai didi

algorithm - 在加权树中查找和存储所有对距离的最佳方法是什么?

转载 作者:塔克拉玛干 更新时间:2023-11-03 04:56:28 27 4
gpt4 key购买 nike

在加权树中查找和存储所有对距离的最佳方法是什么?

我目前的做法是在每个节点上运行 bfs。但很明显,这种方法存在很大的复杂性。我们可以进一步改进它吗?

最佳答案

存储它们的合理方法是使用从 0 开始的连续节点编号,这样距离就可以整齐地放在三角形数组中 d[i,j]其中 j < i .计算它们的合理方法是增加单个搜索。我将使用简写 D[i,j]对于 d[max(i,j), min(i,j)] .为了方便起见,这让我忽略了顶点编号。

Let C be a set of completed nodes
Set W be a working set of nodes
Choose any node. Add it to C. Add all its adjacent nodes to W.
while W is not empty
Remove any node x from W
Let e be the unique edge (x,y) where y \in C and d(x, y) be its length
D[x, y] = d(x, y)
for each node z in C - {y}
D[x, z] = D[x, y] + D[y, z]
add x to C
add all nodes adjacent to x but not in C to W

循环不变量是 C 中的每对节点-- 调用这样的一对 (p, q) -- 我们已经计算出 D[p,q] . C 中的节点总是对应于一个子树和W与该子树相邻的节点。

虽然这与执行 n 具有相同的渐近复杂性广度优先搜索,它可能会快很多,因为它只遍历每个图边一次而不是 n次并计算每个距离一次而不是两次。

一个快速的 Python 实现:

def distance_matrix(graph):
adj, dist = graph
result = [ [0 for j in range(i)] for i in range(len(adj)) ]
c = set([0])
w = set([(x, 0) for x in adj[0]])
while w:
x, y = pair = w.pop()
d = result[max(pair)][min(pair)] = dist[pair]
for z in c:
if z != y:
result[max(x,z)][min(x,z)] = d + result[max(y,z)][min(y,z)]
c.add(x)
for a in adj[x]:
if a not in c:
w.add((a, x))
return result

def to_graph(tree):
adj = [ set() for i in range(len(tree)) ]
dist = {}
for (parent, child_pairs) in tree:
for (edge_len, child) in child_pairs:
adj[child].add(parent)
adj[parent].add(child)
dist[(parent, child)] = edge_len
dist[(child, parent)] = edge_len
return (adj, dist)

def main():
tree = (
(0, ((12, 1), (7, 2), (9, 3))),
(1, ((5, 4), (19, 5))),
(2, ()),
(3, ((31, 6),)),
(4, ((27, 7), (15, 8))),
(5, ()),
(6, ((23, 9), (11, 10))),
(7, ()),
(8, ()),
(9, ()),
(10, ()))
graph = to_graph(tree)
print distance_matrix(graph)

输出(带 pprint):

[[],
[12],
[7, 19],
[9, 21, 16],
[17, 5, 24, 26],
[31, 19, 38, 40, 24],
[40, 52, 47, 31, 57, 71],
[44, 32, 51, 53, 27, 51, 84],
[32, 20, 39, 41, 15, 39, 72, 42],
[63, 75, 70, 54, 80, 94, 23, 107, 95],
[51, 63, 58, 42, 68, 82, 11, 95, 83, 34]]

关于algorithm - 在加权树中查找和存储所有对距离的最佳方法是什么?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44990856/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com