- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我有一个 numpy 数组,由大约 1200 个数组组成,每个数组包含 10 个值。 np.shape = 1200, 10。每个元素的值都在 0 到 570 万之间。
接下来我有一个包含 3800 行的 .csv 文件。每行包含 2 个值。第一个值表示一个范围,第二个值是一个标识符。 .csv 文件的第一行和最后 5 行:
509,47222
1425,47220
2404,47219
4033,47218
6897,47202
...,...
...,...
...,...
5793850,211
5794901,186
5795820,181
5796176,43
5796467,33
第一列一直上升,直到达到 570 万。对于 numpy 数组中的每个值,我想检查 .csv 文件的第一列。例如,我有值 3333
,这意味着属于 3333
的标识符是 47218
。每行表示从前一行的第一列到本行的第一列,例如:2404 - 4033
标识符是47218
。
现在我想获取 numpy 数组中每个值的标识符,然后我想保护标识符以及在 numpy 数组中找到该标识符的频率。这意味着我需要在 12000 行的 csv 文件上循环 3800 次,然后++ 一个整数。这个过程大约需要 30 秒,这太长了。
这是我目前使用的代码:
numpy_file = np.fromfile(filename, dtype=np.int32)
#some code to format numpy_file correctly
with open('/identifer_file.csv') as read_file:
csv_reader = csv.reader(read_file, delimiter=',')
csv_reader = list(csv_reader)
identifier_dict = {}
for numpy_array in numpy_file:
for numpy_value in numpy_array:
#there are 12000 numpy_value in numpy_file
for row in csv_reader:
last_identifier = 0
if numpy_value <= int(row[0]):
last_identifier = int(row[1])
#adding the frequency of the identifier in numpy_file to a dict
if last_identifier in identifier_dict:
identifier_dict[last_identifier] += 1
else:
identifier_dict[last_identifier] = 1
else:
continue
break
for x, y in identifier_dict.items():
if(y > 40):
print("identifier: {} amount of times found: {}".format(x, y))
我应该实现什么算法来加速这个过程?
编辑我试过将 numpy 数组折叠成一维数组,所以它有 12000 个值。这对速度没有实际影响。最新测试33秒
最佳答案
设置:
import numpy as np
import collections
np.random.seed(100)
numpy_file = np.random.randint(0, 5700000, (1200,10))
#'''range, identifier'''
read_file = io.StringIO('''509,47222
1425,47220
2404,47219
4033,47218
6897,47202
5793850,211
5794901,186
5795820,181
5796176,43
5796467,33''')
csv_reader = csv.reader(read_file, delimiter=',')
csv_reader = list(csv_reader)
# your example code put in a function and adapted for the setup above
def original(numpy_file,csv_reader):
identifier_dict = {}
for numpy_array in numpy_file:
for numpy_value in numpy_array:
#there are 12000 numpy_value in numpy_file
for row in csv_reader:
last_identifier = 0
if numpy_value <= int(row[0]):
last_identifier = int(row[1])
#adding the frequency of the identifier in numpy_file to a dict
if last_identifier in identifier_dict:
identifier_dict[last_identifier] += 1
else:
identifier_dict[last_identifier] = 1
else:
continue
break
# for x, y in identifier_dict.items():
# if(y > 40):
# print("identifier: {} amount of times found: {}".format(x, y))
return identifier_dict
三个解决方案,每个都向量化一些操作。第一个函数消耗最少的内存,最后一个消耗最多的内存。
def first(numpy_file,r):
'''compare each value in the array to the entire first column of the csv'''
alternate = collections.defaultdict(int)
for value in np.nditer(numpy_file):
comparison = value < r[:,0]
identifier = r[:,1][comparison.argmax()]
alternate[identifier] += 1
return alternate
def second(numpy_file,r):
'''compare each row of the array to the first column of csv'''
alternate = collections.defaultdict(int)
for row in numpy_file:
comparison = row[...,None] < r[:,0]
indices = comparison.argmax(-1)
id_s = r[:,1][indices]
for thing in id_s:
#adding the frequency of the identifier in numpy_file to a dict
alternate[thing] += 1
return alternate
def third(numpy_file,r):
'''compare the whole array to the first column of csv'''
alternate = collections.defaultdict(int)
other = collections.Counter()
comparison = numpy_file[...,None] < r[:,0]
indices = comparison.argmax(-1)
id_s = r[:,1][indices]
other = collections.Counter(map(int,np.nditer(id_s)))
return other
这些函数需要将 csv 文件读入一个 numpy 数组:
read_file.seek(0) #io.StringIO object from setup
csv_reader = csv.reader(read_file, delimiter=',')
r = np.array([list(map(int,thing)) for thing in csv_reader])
one = first(numpy_file, r)
two = second(numpy_file,r)
three = third(numpy_file,r)
assert zero == one
assert zero == two
assert zero == three
关于python - 将多个数组值匹配到 csv 文件中的行很慢,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57396902/
使用sed和/或awk,仅在行包含字符串“ foo”并且行之前和之后的行分别包含字符串“ bar”和“ baz”时,我才希望删除行。 因此,对于此输入: blah blah foo blah bar
例如: S1: "some filename contains few words.txt" S2:“一些文件名包含几个单词 - draft.txt” S3:“一些文件名包含几个单词 - 另一个 dr
我正在尝试处理一些非常困惑的数据。我需要通过样本 ID 合并两个包含不同类型数据的大数据框。问题是一张表的样本 ID 有许多不同的格式,但大多数都包含用于匹配其 ID 中某处所需的 ID 字符串,例如
我想在匹配特定屏幕尺寸时显示特定图像。在这种情况下,对于 Bootstrap ,我使用 col-xx-## 作为我的选择。但似乎它并没有真正按照我认为应该的方式工作。 基本思路,我想显示一种全屏图像,
出于某种原因,这条规则 RewriteCond %{REQUEST_FILENAME} !-f RewriteCond %{REQUEST_FILENAME} !-d RewriteRule ^(.*
我想做类似的东西(Nemerle 语法) def something = match(STT) | 1 with st= "Summ" | 2 with st= "AVG" =>
假设这是我的代码 var str="abc=1234587;abc=19855284;abc=1234587;abc=19855284;abc=1234587;abc=19855284;abc=123
我怎样才能得到这个字符串的数字:'(31.5393701, -82.46235569999999)' 我已经在尝试了,但这离解决方案还很远:) text.match(/\((\d+),(\d+)\)/
如何去除输出中的逗号 (,)?有没有更好的方法从字符串或句子中搜索 url。 alert(" http://www.cnn.com df".match(/https?:\/\/([-\w\.]+
a = ('one', 'two') b = ('ten', 'ten') z = [('four', 'five', 'six'), ('one', 'two', 'twenty')] 我正在尝试
我已经编写了以下代码,我希望用它来查找从第 21 列到另一张表中最后一行的值,并根据这张表中 A 列和另一张表中 B 列中的值将它们返回到这张表床单。 当我使用下面的代码时,我得到一个工作表错误。你能
我在以下结构中有两列 A B 1 49 4922039670 我已经能够评估 =LEN(A1)如2 , =LEFT(B1,2)如49 , 和 =LEFT(B1,LEN(A1)
我有一个文件,其中一行可以以 + 开头, -或 * .在其中一些行之间可以有以字母或数字(一般文本)开头的行(也包含这些字符,但不在第 1 列中!)。 知道这一点,设置匹配和突出显示机制的最简单方法是
我有一个数据字段文件,其中可能包含注释,如下所示: id, data, data, data 101 a, b, c 102 d, e, f 103 g, h, i // has to do with
我有以下模式:/^\/(?P.+)$/匹配:/url . 我的问题是它也匹配 /url/page ,如何忽略/在这个正则表达式中? 该模式应该: 模式匹配:/url 模式不匹配:/url/page 提
我有一个非常庞大且复杂的数据集,其中包含许多对公司的观察。公司的一些观察是多余的,我需要制作一个键来将多余的观察映射到一个单独的观察。然而,判断他们是否真的代表同一家公司的唯一方法是通过各种变量的相似
我有以下 XML A B C 我想查找 if not(exists(//Record/subRecord
我制作了一个正则表达式来验证潜在的比特币地址,现在当我单击报价按钮时,我希望根据正则表达式检查表单中输入的值,但它不起作用。 https://jsfiddle.net/arkqdc8a/5/ var
我有一些 MS Word 文档,我已将其全部内容转移到 SQL 表中。 内容包含多个方括号和大括号,例如 [{a} as at [b],] {c,} {d,} etc 我需要进行检查以确保括号平衡/匹
我正在使用 Node.js 从 XML 文件读取数据。但是当我尝试将文件中的数据与文字进行比较时,它不匹配,即使它看起来相同: const parser: xml2js.Parser = new
我是一名优秀的程序员,十分优秀!