gpt4 book ai didi

c - 用于字符串连接的 OpenCL 内核

转载 作者:塔克拉玛干 更新时间:2023-11-03 04:45:10 29 4
gpt4 key购买 nike

我没有找到太多关于使用 GPU 对字符串执行操作的文献或示例。具体来说,我有 2 个字符串数组,我需要将第二个数组的元素连接到第一个数组的相应元素。我不知道如何为此编写内核。

C 中的串联示例是:

#include <stdio.h>

void concatenate_string(char*, char*, char*);

int main()
{
char original[100], add[100], result[100];
printf("Enter source string\n");
scanf("%s", original);
printf("Enter string to concatenate\n");
scanf("%s", add);
concatenate_string(original, add, result);

printf("String after concatenation is \"%s\"\n", result);

return 0;
}

void concatenate_string(char *original, char *add, char *result)
{
while(*original)
{
*result = *original;
original++;
result++;
}
while(*add)
{
*result = *add;
add++;
result++;
}
*result = '\0';
}

下面是我的包含内核的 OpenCL 主机代码。内核遵循与上面的 concatenate_string 函数相同的流程。程序成功执行,但没有输出。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef __APPLE__
#include <OpenCL/cl.h>
#else
#include <CL/cl.h>
#endif
#include <ocl_macros.h>
#include <iostream>
#include <string>
//Common defines
#define VENDOR_NAME "AMD"
#define DEVICE_TYPE CL_DEVICE_TYPE_GPU
#define VECTOR_SIZE 1024
using namespace std;

//OpenCL kernel which is run for every work item created.
//The below const char string is compiled by the runtime complier
//when a program object is created with clCreateProgramWithSource
//and built with clBuildProgram.
const char *concat_kernel =
"__kernel \n"
"void concat_kernel( \n"
" __global uchar *D, \n"
" __global uchar *E, \n"
" __global uchar *F) \n"
"{ \n"
" //Get the index of the work-item \n"
" int index = get_global_id(0); \n"
" while(D[index]) \n"
" { \n"
" *F[index] = *D[index]; \n"
" D[index]++; \n"
" F[index]++; \n"
" } \n"
" while(E[index]) \n"
" { \n"
" *F[index] = *E[index]; \n"
" E[index]++; \n"
" F[index]++; \n"
" } \n"
" *F[index] = '\0'; \n"
"} \n";

int main(void) {

cl_int clStatus; //Keeps track of the error values returned.

// Get platform and device information
cl_platform_id * platforms = NULL;

// Set up the Platform. Take a look at the MACROs used in this file.
// These are defined in common/ocl_macros.h
OCL_CREATE_PLATFORMS( platforms );

// Get the devices list and choose the type of device you want to run on
cl_device_id *device_list = NULL;
OCL_CREATE_DEVICE( platforms[0], DEVICE_TYPE, device_list);

// Create OpenCL context for devices in device_list
cl_context context;
cl_context_properties props[3] =
{
CL_CONTEXT_PLATFORM,
(cl_context_properties)platforms[0],
0
};
// An OpenCL context can be associated to multiple devices, either CPU or GPU
// based on the value of DEVICE_TYPE defined above.
context = clCreateContext( NULL, num_devices, device_list, NULL, NULL, &clStatus);
LOG_OCL_ERROR(clStatus, "clCreateContext Failed..." );

// Create a command queue for the first device in device_list
cl_command_queue command_queue = clCreateCommandQueue(context, device_list[0], 0, &clStatus);
LOG_OCL_ERROR(clStatus, "clCreateCommandQueue Failed..." );

// Allocate space for vectors D, E, and F
string *D = (string*)malloc(sizeof(string)*VECTOR_SIZE);
string *E = (string*)malloc(sizeof(string)*VECTOR_SIZE);
string *F = (string*)malloc(sizeof(string)*VECTOR_SIZE);
for(int i = 0; i < VECTOR_SIZE; i++)
{
D[i] = ".25_numstring";
}
for(int i = 0; i < VECTOR_SIZE; i++)
{
E[i] = "string_2";
F[i] = "0";
}
// Create memory buffers on the device for each vector
cl_mem D_clmem = clCreateBuffer(context, CL_MEM_READ_ONLY,
VECTOR_SIZE * sizeof(string), NULL, &clStatus);
cl_mem E_clmem = clCreateBuffer(context, CL_MEM_READ_ONLY,
VECTOR_SIZE * sizeof(string), NULL, &clStatus);
cl_mem F_clmem = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
VECTOR_SIZE * sizeof(string), NULL, &clStatus);

// Copy the Buffer D and E to the device. We do a blocking write to the device buffer.
clStatus = clEnqueueWriteBuffer(command_queue, D_clmem, CL_TRUE, 0,
VECTOR_SIZE * sizeof(string), D, 0, NULL, NULL);
LOG_OCL_ERROR(clStatus, "clEnqueueWriteBuffer Failed..." );
clStatus = clEnqueueWriteBuffer(command_queue, E_clmem, CL_TRUE, 0,
VECTOR_SIZE * sizeof(string), E, 0, NULL, NULL);
LOG_OCL_ERROR(clStatus, "clEnqueueWriteBuffer Failed..." );

// Create a program from the kernel source
cl_program program = clCreateProgramWithSource(context, 1,
(const char **)&concat_kernel, NULL, &clStatus);
LOG_OCL_ERROR(clStatus, "clCreateProgramWithSource Failed..." );

// Build the program
clStatus = clBuildProgram(program, 1, device_list, NULL, NULL, NULL);
if(clStatus != CL_SUCCESS)
LOG_OCL_COMPILER_ERROR(program, device_list[0]);

// Create the OpenCL kernel
cl_kernel kernel = clCreateKernel(program, "concat_kernel", &clStatus);

// Set the arguments of the kernel. Take a look at the kernel definition in concat_kernel
// variable. First parameter is a constant and the other three are buffers.
clStatus |= clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&D_clmem);
clStatus |= clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&E_clmem);
clStatus |= clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&F_clmem);
LOG_OCL_ERROR(clStatus, "clSetKernelArg Failed..." );

// Execute the OpenCL kernel on the list
size_t global_size = VECTOR_SIZE; // Process one vector element in each work item
size_t local_size = 64; // Process in work groups of size 64.
cl_event concat_event;
clStatus = clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL,
&global_size, &local_size, 0, NULL, &concat_event);
LOG_OCL_ERROR(clStatus, "clEnqueueNDRangeKernel Failed..." );

// Read the memory buffer F_clmem on the device to the host allocated buffer C
// This task is invoked only after the completion of the event concat_event
clStatus = clEnqueueReadBuffer(command_queue, F_clmem, CL_TRUE, 0,
VECTOR_SIZE * sizeof(string), F, 1, &concat_event, NULL);
LOG_OCL_ERROR(clStatus, "clEnqueueReadBuffer Failed..." );

// Clean up and wait for all the comands to complete.
clStatus = clFinish(command_queue);

// Display the result to the screen
for(int i = 0; i < VECTOR_SIZE; i++)
printf("%s + %s = %s\n", D[i].c_str(), E[i].c_str(), F[i].c_str());

// Finally release all OpenCL objects and release the host buffers.
clStatus = clReleaseKernel(kernel);
clStatus = clReleaseProgram(program);
clStatus = clReleaseMemObject(D_clmem);
clStatus = clReleaseMemObject(E_clmem);
clStatus = clReleaseMemObject(F_clmem);
clStatus = clReleaseCommandQueue(command_queue);
clStatus = clReleaseContext(context);
free(D);
free(E);
free(F);
free(platforms);
free(device_list);

return 0;
}

最佳答案

我认为将 concat 操作卸载到 GPU 不会给您带来多大好处,但我会这样做:

__kernel void concat_kernel(__global uchar *D,__global uchar *E,__global uchar *F, const int dSize, const int eSize)
{
int gid = get_global_id(0);
int globalSize = get_global_size(0);

int i;
for(i=gid; i< dSize; i+= globalSize){
F[i] = D[i];
}

for(i=gid; i< eSize; i+= globalSize){
F[i+dSize] = E[i];
}

if(gid == globalSize-1){
//using the last work item here because it will be
//idle when (dSize+eSize) % globalSize != 0
F[dSize + eSize -1] = '\0';
}
}

您需要传入要连接的字符串的大小,而不是搜索空值。这个内核可以处理任意数量的工作项,以及不同大小的 D 和 E 输入。像往常一样,F 需要足够大以容纳 dSize+eSise+1 个字符。

每个工作项将复制大约 (dSize+eSize)/globalSize 个字符到输出。

改进空间:

  • 尝试不同的全局工作大小以找到适合您的设备和输入大小的最佳值
  • 全局内存访问应该很好,如果你想尝试单个工作组并使用本地内存,这可能会有所帮助,但你将受到全局读取速度的限制。

关于c - 用于字符串连接的 OpenCL 内核,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/26806800/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com