- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我指定了“n”个点数。将它们标记为 +1
或 -1
。我将所有这些存储在字典中,如下所示:{'point1' : [(0.565,-0.676), +1], ... }
。我试图找到一条将它们分开的线 - 即线上方标记为 +1 的点,线下方标记为 -1 的点。谁能帮忙?
我正在尝试应用 w = w + y(r)
作为“学习算法”,w
是权重向量 y
为+1
或-1
,r
为点
代码运行但分隔线不精确 - 它没有正确分隔。此外,随着我增加要分离的点数,该线的效率会降低。
如果您运行代码,绿线应该是分隔线。它越接近蓝线(定义为完美线)的斜率越好。
from matplotlib import pyplot as plt
import numpy as np
import random
n = 4
x_values = [round(random.uniform(-1,1),3) for _ in range(n)]
y_values = [round(random.uniform(-1,1),3) for _ in range(n)]
pts10 = zip(x_values, y_values)
label_dict = {}
x1, y1, x2, y2 = (round(random.uniform(-1,1),3) for _ in range(4))
b = [x1, y1]
d = [x2, y2]
slope, intercept = np.polyfit(b, d, 1)
fig, ax = plt.subplots(figsize=(8,8))
ax.scatter(*zip(*pts10), color = 'black')
ax.plot(b,d,'b-')
label_plus = '+'
label_minus = '--'
i = 1
for x,y in pts10:
if(y > (slope*x + intercept)):
ax.annotate(label_plus, xy=(x,y), xytext=(0, -10), textcoords='offset points', color = 'blue', ha='center', va='center')
label_dict['point{}'.format(i)] = [(x,y), "+1"]
else:
ax.annotate(label_minus, xy=(x,y), xytext=(0, -10), textcoords='offset points', color = 'red', ha='center', va='center')
label_dict['point{}'.format(i)] = [(x,y), "-1"]
i += 1
# this is the algorithm
def check(ww,rr):
while(np.dot(ww,rr) >= 0):
print "being refined 1"
ww = np.subtract(ww,rr)
return ww
def check_two(ww,rr):
while(np.dot(ww,rr) < 0):
print "being refined 2"
ww = np.add(ww,rr)
return ww
w = np.array([0,0])
ii = 1
for x,y in pts10:
r = np.array([x,y])
print w
if (np.dot(w,r) >= 0) != int(label_dict['point{}'.format(ii)][1]) < 0:
print "Point " + str(ii) + " should have been below the line"
w = np.subtract(w,r)
w = check(w,r)
elif (np.dot(w,r) < 0) != int(label_dict['point{}'.format(ii)][1]) >= 0:
print "Point " + str(ii) + " should have been above the line"
w = np.add(w,r)
w = check_two(w,r)
else:
print "Point " + str(ii) + " is in the correct position"
ii += 1
ax.plot(w,'g--')
ax.set_xlabel('X-axis')
ax.set_ylabel('Y-axis')
ax.set_title('Labelling 10 points')
ax.set_xticks(np.arange(-1, 1.1, 0.2))
ax.set_yticks(np.arange(-1, 1.1, 0.2))
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
ax.legend()
最佳答案
例如,您可以使用 SGDClassifier
来自 scikit-learn (sklearn
)。线性分类器计算预测如下(参见 the source code ):
def predict(self, X):
scores = self.decision_function(X)
if len(scores.shape) == 1:
indices = (scores > 0).astype(np.int)
else:
indices = scores.argmax(axis=1)
return self.classes_[indices]
def decision_function(self, X):
[...]
scores = safe_sparse_dot(X, self.coef_.T,
dense_output=True) + self.intercept_
return scores.ravel() if scores.shape[1] == 1 else scores
因此对于您的示例的二维情况,这意味着数据点被分类为 +1
如果
x*w1 + y*w2 + i > 0
在哪里
x, y = X
w1, w2 = self.coef_
i = self.intercept_
和-1
否则。因此,决定取决于 x*w1 + y*w2 + i
是否大于或小于(或等于)零。因此,通过设置 x*w1 + y*w2 + i == 0
可以找到“边界”。我们可以自由选择其中一个组件,另一个由这个等式决定。
以下代码片段适用于 SGDClassifier
并绘制生成的“边界”。它假设数据点散布在原点 (x, y = 0, 0
) 周围,即它们的平均值(大约)为零。实际上,为了获得好的结果,应该先将数据点减去均值,然后进行拟合,再将均值加回结果。以下代码段只是将点散布在原点周围。
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import SGDClassifier
n = 100
x = np.random.uniform(-1, 1, size=(n, 2))
# We assume points are scatter around zero.
b = np.zeros(2)
d = np.random.uniform(-1, 1, size=2)
slope, intercept = (d[1] / d[0]), 0.
fig, ax = plt.subplots(figsize=(8,8))
ax.scatter(x[:, 0], x[:, 1], color = 'black')
ax.plot([b[0], d[0]], [b[1], d[1]], 'b-', label='Ideal')
labels = []
for point in x:
if(point[1] > (slope * point[0] + intercept)):
ax.annotate('+', xy=point, xytext=(0, -10), textcoords='offset points', color = 'blue', ha='center', va='center')
labels.append(1)
else:
ax.annotate('--', xy=point, xytext=(0, -10), textcoords='offset points', color = 'red', ha='center', va='center')
labels.append(-1)
labels = np.array(labels)
classifier = SGDClassifier()
classifier.fit(x, labels)
x1 = np.random.uniform(-1, 1)
x2 = (-classifier.intercept_ - x1 * classifier.coef_[0, 0]) / classifier.coef_[0, 1]
ax.plot([0, x1], [0, x2], 'g--', label='Fit')
plt.legend()
plt.show()
此图显示了 n = 100
数据点的结果:
下图显示了不同 n
的结果,其中点是从包含 1000 个数据点的池中随机选择的:
关于python - 为什么这个线性分类器算法是错误的?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45256237/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!