- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
使用动态规划方法计算函数 H 的值 H(7)定义为 H(1)=2, H(2)=3 并且对于所有整数 i>2,我们有:H(i)=H(i-2)-H(i-1)+2。
我查找、观看视频并阅读了有关动态规划的内容。但仍在为上述问题而苦苦挣扎。我了解您通过事先解决较小的问题来解决主要问题。然后你就有更多的机会解决主要问题,因为你可以引用你以前的创立。你发现的这些先前的结果被传递到一个结果中,但这是我不能用这个问题做的。
H(1)=H(1-2)-H(1-1)+2。
H(2)=H(2-2)-H(2-1)+2。
H(3)=H(3-2)-H(3-1)+2。
H(4)=H(4-2)-H(4-1)+2。
H(5)=H(5-2)-H(5-1)+2。
H(6)=H(6-2)-H(6-1)+2。
我假设这些的简单计算应该放在一个表中,然后我应该以某种方式使用这些信息来计算 H(7)。
我的想法是完全错误的还是正确的,我不知道=[此外,这是期末考试的修订版。
最佳答案
你的任务类似于斐波那契数:)首先,我将向您解释斐波那契数列。
F(1) = 1
F(2) = 1
F(N) = F(N - 1) + F(N - 2) ,对于每个 N > 2
前几个斐波那契数:
F(1) = 1
F(2) = 1
F(3) = F(2) + F(1) = 2
F(4) = F(3) + F(2) = 3
F(5) = F(4) + F(3) = 5
...
您可以在以下位置查看更多信息:http://en.wikipedia.org/wiki/Fibonacci_number
斐波那契数列由递归关系定义。斐波那契数列是递归数列。
每个递归必须有:
1) 基本案例
2)递归关系
对于斐波那契数列,基本情况是:F(1),等于 1 和 F(2),也等于 <强>1 。递归关系是“连接”同一问题的较小实例的关系。对于斐波那契数列,如果您想知道 F(N) ,则必须知道 F(N - 1) 和 F(N - 2), 用于所有 N > 2,仅此而已。对于斐波那契数列,递归关系是 F(N) = F(N - 1) + F(N - 2)。
代码如下:
#include <cstdio>
#include <cstdlib>
using namespace std;
int f(int n) {
//printf("n = %d\n", n);
if(n == 1 || n == 2) // base case
return 1;
return f(n - 1) + f(n - 2); // recurrence relation
}
int main() {
int n; scanf("%d", &n);
printf("%d\n", f(n));
return 0;
}
如果您删除带注释的 printf,您会发现许多 Fibonacci 值被一遍又一遍地计算,这是非常低效的。尝试为 F(45) 运行这段代码,您会明白为什么它效率很低。
这就是动态规划的用武之地。如您所见,许多斐波那契值被反复计算,我们可以使用内存将它们保存在表中,如果我们需要它们,我们可以从表中返回它们。这是代码:
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;
const int N = 50;
long long memo[N];
long long f(int n) {
if(memo[n] != -1) // if we already computed the value of f(N), then return that value
return memo[n];
return memo[n] = f(n - 1) + f(n - 2); // else compute the value, and save it into the table
}
int main() {
memset(memo, -1, sizeof(memo));
memo[1] = memo[2] = 1; // add answer for base case to the table
int n; scanf("%d", &n);
printf("%lld\n", f(n));
return 0;
}
最后,你的问题。
作为 Fibonacci,您可以保存 h(N) 的计算值。这是一个代码:
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;
const int N = 25;
int check, memo[N];
int f(int x) {
if(memo[x] != check) // if f(n) was already computed
return memo[x]; // return computed value
return memo[x] = f(x - 2) - f(x - 1) + 2; // else compte given value and add it to a table
}
int main() {
memset(memo, 63, sizeof(memo)); // very big number, if the value of h(n) is different then that very big number, then we know we have computed the value for h(n)
check = memo[0];
memo[1] = 2; // base case
memo[2] = 3; // base case
int n; scanf("%d", &n);
printf("%d\n", f(n));
return 0;
}
关于algorithm - 解决算法的动态规划,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27696703/
滑动窗口限流 滑动窗口限流是一种常用的限流算法,通过维护一个固定大小的窗口,在单位时间内允许通过的请求次数不超过设定的阈值。具体来说,滑动窗口限流算法通常包括以下几个步骤: 初始化:设置窗口
表达式求值:一个只有+,-,*,/的表达式,没有括号 一种神奇的做法:使用数组存储数字和运算符,先把优先级别高的乘法和除法计算出来,再计算加法和减法 int GetVal(string s){
【算法】前缀和 题目 先来看一道题目:(前缀和模板题) 已知一个数组A[],现在想要求出其中一些数字的和。 输入格式: 先是整数N,M,表示一共有N个数字,有M组询问 接下来有N个数,表示A[1]..
1.前序遍历 根-左-右的顺序遍历,可以使用递归 void preOrder(Node *u){ if(u==NULL)return; printf("%d ",u->val);
先看题目 物品不能分隔,必须全部取走或者留下,因此称为01背包 (只有不取和取两种状态) 看第一个样例 我们需要把4个物品装入一个容量为10的背包 我们可以简化问题,从小到大入手分析 weightva
我最近在一次采访中遇到了这个问题: 给出以下矩阵: [[ R R R R R R], [ R B B B R R], [ B R R R B B], [ R B R R R R]] 找出是否有任
我正在尝试通过 C++ 算法从我的 outlook 帐户发送一封电子邮件,该帐户已经打开并记录,但真的不知道从哪里开始(对于 outlook-c++ 集成),谷歌也没有帮我这么多。任何提示将不胜感激。
我发现自己像这样编写了一个手工制作的 while 循环: std::list foo; // In my case, map, but list is simpler auto currentPoin
我有用于检测正方形的 opencv 代码。现在我想在检测正方形后,代码运行另一个命令。 代码如下: #include "cv.h" #include "cxcore.h" #include "high
我正在尝试模拟一个 matlab 函数“imfill”来填充二进制图像(1 和 0 的二维矩阵)。 我想在矩阵中指定一个起点,并像 imfill 的 4 连接版本那样进行洪水填充。 这是否已经存在于
我正在阅读 Robert Sedgewick 的《C++ 算法》。 Basic recurrences section it was mentioned as 这种循环出现在循环输入以消除一个项目的递
我正在思考如何在我的日历中生成代表任务的数据结构(仅供我个人使用)。我有来自 DBMS 的按日期排序的任务记录,如下所示: 买牛奶(18.1.2013) 任务日期 (2013-01-15) 任务标签(
输入一个未排序的整数数组A[1..n]只有 O(d) :(d int) 计算每个元素在单次迭代中出现在列表中的次数。 map 是balanced Binary Search Tree基于确保 O(nl
我遇到了一个问题,但我仍然不知道如何解决。我想出了如何用蛮力的方式来做到这一点,但是当有成千上万的元素时它就不起作用了。 Problem: Say you are given the followin
我有一个列表列表。 L1= [[...][...][.......].......]如果我在展平列表后获取所有元素并从中提取唯一值,那么我会得到一个列表 L2。我有另一个列表 L3,它是 L2 的某个
我们得到二维矩阵数组(假设长度为 i 和宽度为 j)和整数 k我们必须找到包含这个或更大总和的最小矩形的大小F.e k=7 4 1 1 1 1 1 4 4 Anwser是2,因为4+4=8 >= 7,
我实行 3 类倒制,每周换类。顺序为早类 (m)、晚类 (n) 和下午类 (a)。我固定的订单,即它永远不会改变,即使那个星期不工作也是如此。 我创建了一个函数来获取 ISO 周数。当我给它一个日期时
假设我们有一个输入,它是一个元素列表: {a, b, c, d, e, f} 还有不同的集合,可能包含这些元素的任意组合,也可能包含不在输入列表中的其他元素: A:{e,f} B:{d,f,a} C:
我有一个子集算法,可以找到给定集合的所有子集。原始集合的问题在于它是一个不断增长的集合,如果向其中添加元素,我需要再次重新计算它的子集。 有没有一种方法可以优化子集算法,该算法可以从最后一个计算点重新
我有一个包含 100 万个符号及其预期频率的表格。 我想通过为每个符号分配一个唯一(且前缀唯一)的可变长度位串来压缩这些符号的序列,然后将它们连接在一起以表示序列。 我想分配这些位串,以使编码序列的预
我是一名优秀的程序员,十分优秀!