gpt4 book ai didi

c - 有效的回溯算法

转载 作者:塔克拉玛干 更新时间:2023-11-03 04:21:31 25 4
gpt4 key购买 nike

我有这个代码:

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

long result = LONG_MAX;

void swap(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;
}

int hasConnection(int *array, int arrayIndex, int maxBound, int *rules, int size) {
int connection;
for (int i = 0; i < (size - 1)*2; i++) {
if (rules[i] == array[arrayIndex]) {
if (i % 2) {
connection = rules[i - 1];
} else {
connection = rules[i + 1];
}
for (int j = maxBound - 1; j >= 0; j--) {
if (array[j] == connection) {
return 1;
}
}
}
}
return 0;
}

int isCrossed(int *array, int outConnectionIndex, int inConnectionIndex, int *rules, int size) {
for (int i = inConnectionIndex + 1; i < outConnectionIndex; i++) {//sweep trough indexes in between
if (hasConnection(array, i, inConnectionIndex, rules, size)) {//array[i] has connection with index lower than inConnectionIndex
return 1;
}
}
return 0;
}

int isWiredInsideAndCrossed(int *array, int arrayIndex, int *rules, int size) {
int connection;
for (int i = 0; i < 2 * (size - 1); i++) {
if (rules[i] == array[arrayIndex]) {
if (i % 2) {
connection = rules[i - 1];
} else {
connection = rules[i + 1];
}
for (int j = 1; j < arrayIndex - 1; j++) {
if (array[j] == connection) {
if (isCrossed(array, arrayIndex, j, rules, size)) {
return 1;
}
}
}
}
}
return 0;
}

void trySequence(int * array, int size, int *priceMap, int *rules) {
int ret = 0;
for (int i = 0; i < size; i++) {
ret = ret + priceMap[i * size + array[i]];
if (ret >= result || isWiredInsideAndCrossed(array, i, rules, size)) {
return;
}
}
result = ret;
}

void permute(int *array, int i, int size, int *priceMap, int *rules) {
if (size == i) {
trySequence(array, size, priceMap, rules);
return;
}
int j = i;
for (j = i; j < size; j++) {
swap(array + i, array + j);
permute(array, i + 1, size, priceMap, rules);
swap(array + i, array + j);
}
return;
}

int main(int argc, char** argv) {
int size;
fscanf(stdin, "%d", &size);
int *priceMap = malloc(sizeof (int)*size * size);
int *rules = malloc(sizeof (int)*(size - 1)*2);
int i = 0;
int squaredSize = size*size;
while (i < squaredSize) {
scanf("%d", priceMap + i);
i++;
}
i = 0;
int rulesSize = (size - 1)*2;
while (i < rulesSize) {
scanf("%d", rules + i);
i++;
}
int arrayToPermute [size];
for (int j = 0; j < size; j++) {
arrayToPermute[j] = j;
}
permute(arrayToPermute, 0, size, priceMap, rules);
printf("%ld\n", result);
return (EXIT_SUCCESS);
}

它应该做 this

编辑:基本上,任务是找到放置在圆圈边缘的 N 个插槽中的 N 台设备的最便宜组合,在输入端有一个成本矩阵,告诉您在每个插槽中安装每个设备的成本,设备也通过不得交叉的电线相互连接。总有 N-1 个连接。详细信息和示例位于上面的链接中。

我的问题是我的解决方案太慢了。我需要它在不到两秒的时间内解决 13 号钻头的问题。太精确了:我需要在不到 1 秒的时间内解决这个输入:

12
27 25 21 27 25 30 27 26 22 28 27 26
21 22 26 30 25 28 21 21 22 23 22 30
20 21 22 20 30 30 30 22 30 26 23 26
27 30 24 21 20 24 26 24 22 22 24 22
29 26 20 29 22 23 27 28 23 28 30 27
21 21 20 30 20 22 25 29 22 29 27 24
26 21 30 24 23 23 29 29 29 28 23 22
25 27 21 24 20 24 27 23 27 28 25 26
26 27 23 27 23 27 29 30 25 24 20 23
20 22 25 20 23 26 20 29 21 24 25 20
27 28 25 20 25 22 26 23 24 21 26 23
23 21 28 23 26 30 22 30 25 26 26 20
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 11

(解为262) 这在不到 2 秒的时间内:

13
52 9 42 65 54 47 16 62 35 47 63 2 48
25 4 12 25 58 12 45 62 70 60 40 17 33
28 64 64 62 1 28 3 26 56 15 59 64 17
7 23 70 20 57 70 46 5 6 1 21 12 40
62 53 5 15 22 43 57 15 26 42 51 16 38
20 13 64 3 51 22 28 1 18 27 4 36 9
11 20 41 65 29 63 54 28 31 63 27 59 41
44 21 42 16 59 10 60 11 3 53 52 53 37
41 51 18 4 38 6 22 49 15 51 54 61 7
54 6 5 24 47 35 46 11 26 17 53 37 25
34 42 6 54 40 47 59 25 53 53 37 9 64
69 63 68 5 37 16 17 61 33 51 19 39 44
6 47 4 6 21 17 23 24 13 29 34 54 33
0 1
0 2
0 3
1 4
1 5
1 6
2 7
2 8
2 9
3 10
3 11
3 12

.(解为165)所以我想知道是否有人知道如何做到这一点,我完全迷路了?

最佳答案

您的程序生成所有可能的排列,然后测试排列是否有效。测试本身涉及嵌套循环。您可以尝试优化您的数据结构,以便您的检查更有效率,或者您可以尝试尽早找到搜索空间中的死胡同,正如 Photon 所建议的那样。

一种更有效的方法可能是设计程序,以便只创建有效的排列。这减少了搜索空间,也摆脱了测试。

如果看问题描述中的例子,wrie网络是一个无环图:

                            5          
|
1 6
| |
0---2---7
| |
3 8
|
4

如果您从工具 0 开始并将其放在插槽 0 中,下一步是放置工具 2 及其“后代”的排列,即工具 1、7 和 3 及其各自连接的工具。从工具0的角度来看,你可以把它变成一棵树:

                  [1237]
/ / | \
1 2 [34] [678]
/ | | \ \
3 4 [56] 7 8
| \
5 6

在这里,叶子只对应一个工具。分支机构有多种工具。分支机构的所有分支均形成有效安排。

0 (1 2 (3 4) ((5 6) 7 8))

当然,[56] 的每个排列都必须与其他分支的每个排列相结合。您可以通过实现一种里程表来实现这一点,该里程表不会在每个空间中遍历从 0 到 9 的数字,而是通过分支的可能排列。

每个生成的排列都是有效的,但这种技术还没有创建所有可能的排列。请记住,我们已将工具 0 固定在插槽 0 中,但事实并非如此。但是有效布局的地形可用于通过旋转它并将工具 0 放入插槽 1、2 等来生成其他 8 个布局。

此技术可将您的搜索空间减少 9 个!到 9·4! · 2! · 3! · 2!或乘以 70 倍。并且没有测试,但以更复杂的数据结构为代价。

(在您的 12 工具示例中,减少是极端的,其中电线网络实际上只是一条没有 fork 的直线。)

此代码实现了所描述的技术:

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>



enum {
N = 16 // hardcoded max. size
};

struct tool {
int conn[N - 1]; // wire connections
int nconn;

int desc[N]; // "descendants" of the tree node
int ndesc;

int cost[N]; // row of the cost matrix
int used; // flag for recursive descent
};

struct drill {
int n;
struct tool tool[N];

int root; // root node
int branch[N]; // indices of branch nodes
int nbranch; // permutating branches

int opt; // current optimum
};

void swap(int a[], int i, int j)
{
int s = a[i]; a[i] = a[j]; a[j] = s;
}

void reverse(int a[], int i, int n)
{
while (i < --n) swap(a, i++, n);
}

/*
* Turn an array to the next higher permutation. When the
* permutation is already the highest, return 0 and reset the
* array to the smalles permutation. Otherwise, return 1.
*/
int next_perm(int a[], int n)
{
int i = n - 1;
int k = n - 1;

if (n < 2) return 0;

while (k && a[k] < a[k - 1]) k--;
if (k == 0) {
reverse(a, 0, n);
return 0;
}
k--;

while (i > k && a[i] < a[k]) i--;
swap(a, i, k);
reverse(a, k + 1, n);

return 1;
}

/*
* Insertion sort for sorting the branches at the beginning.
*/
void sort(int a[], int len)
{
for (int i = 1; i < len; i++) {
int k = i;

while (k > 0 && a[k] < a[k - 1]) {
swap(a, k, k - 1);
k--;
}
}
}

/*
* Determine the list of descendants for each node.
*/
void descend(struct drill *dr, int n)
{
struct tool *t = dr->tool + n;

t->ndesc = 1;
t->desc[0] = n;

t->used = 1;

for (int i = 0; i < t->nconn; i++) {
int m = t->conn[i];

if (dr->tool[m].used == 0) {
t->desc[t->ndesc++] = m;
descend(dr, m);
}
}

if (t->ndesc > 1) {
sort(t->desc, t->ndesc);
dr->branch[dr->nbranch++] = n;
}

t->used = 0;
}

/*
* Fill the array a with the current arrangement in the tree.
*/
int evaluate(struct drill *dr, int a[], int n)
{
struct tool *t = dr->tool + n;
int m = 0;

if (n == dr->root) {
a[0] = dr->root;
return 1 + evaluate(dr, a + 1, dr->tool[n].conn[0]);
}

for (int i = 0; i < t->ndesc; i++) {
int d = t->desc[i];

if (d == n) {
a[m++] = d;
} else {
m += evaluate(dr, a + m, d);
}
}

return m;
}

/*
* Evaluate all possible permutations and find the optimum.
*/
void optimize(struct drill *dr)
{
dr->opt = (1u << 31) - 1;

for (;;) {
int i = 0;
struct tool *t = dr->tool + dr->branch[0];

for (int j = 0; j < dr->n; j++) {
int a[2 * N];
int cost = 0;

evaluate(dr, a, dr->root);

for (int i = 0; i < dr->n; i++) {
int k = (i + j) % dr->n;

cost += dr->tool[i].cost[a[k]];
}

if (cost < dr->opt) dr->opt = cost;
}

while (next_perm(t->desc, t->ndesc) == 0) {
i++;

if (i == dr->nbranch) return;
t = dr->tool + dr->branch[i];
}
}
}

/*
* Read and prepare drill data, then optimize.
*/
int main(void)
{
struct drill dr = {0};

fscanf(stdin, "%d", &dr.n);

for (int j = 0; j < dr.n; j++) {
for (int i = 0; i < dr.n; i++) {
scanf("%d", &dr.tool[j].cost[i]);
}
}

for (int i = 1; i < dr.n; i++) {
int a, b;

scanf("%d", &a);
scanf("%d", &b);

dr.tool[a].conn[dr.tool[a].nconn++] = b;
dr.tool[b].conn[dr.tool[b].nconn++] = a;
}

while (dr.tool[dr.root].nconn > 1) dr.root++;
dr.tool[dr.root].used = 1;

descend(&dr, dr.tool[dr.root].conn[0]);
optimize(&dr);

printf("%d\n", dr.opt);

return 0;
}

关于c - 有效的回溯算法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46933277/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com