- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我正在尝试使用非整数值减少 Knapsack DP 算法所需的时间和空间。
http://en.wikipedia.org/wiki/Knapsack_problem#Meet-in-the-Middle_Algorithm
In particular, if the [elements] are nonnegative but not integers, we could
still use the dynamic programming algorithm by scaling and rounding (i.e. using
fixed-point arithmetic), but if the problem requires fractional digits of
precision to arrive at the correct answer, W will need to be scaled by 10^d,
and the DP algorithm will require O(W * 10^d) space and O(nW * 10^d) time.
DP 背包算法使用 [ n x W ] 矩阵,用结果填充它,但有些列永远不会被填充 - 它们不匹配对象重量的任何组合。这样,它们最终只会在每一行中填满零,只会浪费时间和空间。
如果我们使用哈希数组而不是矩阵,我们可以减少所需的时间和空间。
edit:
knapsack capacity = 2
items: [{weight:2,value:3} ]
[0 1 2]
[0 0 0]
2: [0 0 3]
^
Do we need this column?
Substitution with hash:
2: {0:0, 2:3}
在 Python 中,字典插入有一个 O(n) 更坏的情况和一个 O(1)“摊销”线性时间。
我错过了什么吗?
背包 DP 算法的这种变体的复杂性是多少?
最佳答案
如果我可以这么说的话,您所说的是快乐的情况 - 在这种情况下,您可以将很少的元素放入一个体积巨大的背包中。在这种情况下,hashmap 可以证明是优化触发复杂度从 O(W * n)
到 O(min(O(2^n * n), O(W * n) ))
(2^n
为n个元素的组合数)。然而,通过这种估计,很明显对于元素数量不多的情况,O(2^n * n)
将主导其他估计。另外,请注意,虽然 O(W * n)
属于同一类,但后一种情况下的常数要大得多(甚至更多:第二种情况下的估计考虑了摊销的复杂性,而不是最坏的情况)。
因此您会发现,在某些情况下 HashMap 可能证明更好,但在常见情况下情况恰恰相反。
关于algorithm - 带有哈希数组的背包 DP,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/12036610/
我已经用 Scala 中的每一项编写了有界背包问题的答案,并尝试将其转换为 Haskell,结果如下: knapsack :: [ ( Int, Int ) ] -> [ ( Int, Int ) ]
我正在解决这个动态编程问题,并且我一直坚持用 Java 编写迭代解决方案 目标是找到花费 X 美分所需的最少卡路里数。如果我们不能恰好花费 X 美分,那么就没有解决方案。我们给定了 N 个元素,每个元
根据维基百科和我浏览过的其他资源,您需要矩阵m[n][W]; n - 元素数量和 W - 背包的总容量。这个矩阵变得非常大,有时大到无法在 C 程序中处理。我知道动态规划的基础是节省内存时间,但是,有
我发现此代码使用蛮力机制解决背包问题(这主要是为了学习,因此无需指出动态更有效)。我得到了可以工作的代码,并且了解了大部分代码。最多。这是问题: 我注意到这两个条件,我不知道它们如何工作以及为什么在代
我必须实现背包问题的以下变体。背包中的每件元素都有优先级和重量。现在我指定一个权重 X。我必须知道计算权重总和至少为 X 并且具有最低优先级的最小项目集。每个项目只能选择一次。示例: Knap
所以我想知道如何计算背包问题的所有解。也就是说,我有兴趣从一组最大大小为 K 的数字中找出可能的子集数。 例如,我们有一组大小为 {3, 2, 5, 6, 7} 的项目,最大大小为 K = 13。因此
我在执行任务时遇到了问题。我有一个数据库,其中包含所有具有“价格”值的项目。它们连接到不同的“轮次”,“轮次”有一个“总值(value)”,其中这些项目“价格”-值(value)全部放在一起定义了“总
我遇到的问题如下: 给定一个包含 N 个元素的队列,每个元素都有一个重量,以及一个包含 K 个容器的队列。我们需要按照元素来的顺序将元素分成容器。例如,第一个项目只能进入第一个容器,第二个可以进入第一
问题如下: You have n trip lengths in km which should be divided among m number of days such that the max
我昨晚在开发一个应用程序时遇到了一个特定的问题,我确信它可能有一个有效的算法来解决它。谁能推荐一下? 问题: TL;DR:也许图片会有所帮助:http://www.custom-foam-insert
如何获取下拉列表,其中占位符显示“选择类别”作为默认选择? 以下代码没有渲染占位符 $this->crud->addField([ // Select2 'label'
刚刚带背包的新品。我在官方网站上搜索并用谷歌搜索,但没有找到答案 在 laravel 7 中,使用 Backpack 4.1 我的数据模型是:客户有很多地址 关系在客户模型中配置: public fu
据我所知(如果我错了请纠正我),背包只处理 $fillable 字段。整个 laravel 的事情不就是 $fillable 和 $guarded 之间的分离吗? MWE: 在 User.php 中:
看到this之后讲座我创建了以下背包代码。在讲座中,教授说从最优值(19:00 分钟)确定集合很容易,但我找不到如何去做。我在代码中提供了一个将值相加为 21 的示例,我如何根据该值确定集合(在本例中
为什么贪心法适用于连续背包问题而不适用于 0-1 背包问题? 最佳答案 对于连续背包,在最佳解决方案中,您不能有 q > 0 的每单位成本为 c 的元素,同时留下 q' > 0 成本为 c' > c
我在理解动态规划时遇到了一些困难,尽管我已经通读了很多资源试图理解。 我理解使用斐波那契算法给出的动态规划示例。我明白如果你使用分而治之的方法,你最终会多次解决一些子问题,而动态编程通过解决这些重叠的
假设一个经典的 0-1 背包问题,但您可以上溢/下溢背包并受到一些惩罚。每单位溢出(重量超过最大容量)扣除X利润,每单位下溢(重量低于最大容量)扣除Y利润。 我想按利润与重量的比率对所有元素进行排序,
我正在编写具有多个约束的背包 0-1 的变体。除了重量限制外,我还有数量限制,但在这种情况下,我想解决背包问题,因为我的背包中需要恰好有 n 件元素,重量小于或等于 W。我我目前正在为基于 Roset
给定一个无限正整数数组或一个正整数流,找出总和为 20 的前五个数。 通过阅读问题陈述,它首先似乎是 0-1 Knapsack 问题,但我很困惑 0-1 Knapsack algo 可以在流上使用的整
我想解决一个3维背包问题。 我有许多不同宽度、高度、长度和值(value)的盒子。我有一个指定的空间,我想把盒子放在那个空间里,这样我就能获得最优的利润。我想使用暴力来做到这一点。 我正在用 Java
我是一名优秀的程序员,十分优秀!