- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我是 FFT 的新手,所以我对某些概念有些困惑。到目前为止,我看到的方程乘法的 FFT 示例涉及具有连续指数的方程(即 A(x) = 1 + 3x + 5x^2 +...
和 B(x) = 4 + 6x + 9x^2 + ...
和 C(x) = A(x)*B(x)
)。但是,可以对两个指数不相等的方程式使用 FFT 吗?比如是否可以用FFT进行乘法:
A(x) = 1 + 3x^2 + 9x^8
和
B(x) = 5x + 6 x^3 + 10x^8
O(nlogn)
时间?
如果不是,是否存在运行时间为 O(nlogn)
的情况?例如,如果产品中的项数是 O(n)
而不是 O(n^2)
?
即使运行时间超过 O(nlogn)
,我们如何使用 FFT 来最小化运行时间?
最佳答案
是的,可以对非等指数多项式使用DFFT...
缺失的指数只是乘以 0
这也是一个数字......只需重写你的多项式:
A(x) = 1 + 3x^2 + 9x^8
B(x) = 5x + 6x^3 + 10x^8
像这样:
A(x) = 1x^0 + 0x^1 + 3x^2 + 0x^3 + 0x^4+ 0x^5+ 0x^6+ 0x^7 + 9x^8
B(x) = 0x^0 + 5x^1 + 0x^2 + 6x^3 + 0x^4+ 0x^5+ 0x^6+ 0x^7 + 10x^8
所以您的 DFFT 向量是:
A = (1,0,3,0,0,0,0,0, 9)
B = (0,5,0,6,0,0,0,0,10)
添加零,使向量成为正确的结果大小(最大 A 指数 +1 + 最大 B 指数 +1),并为 DFFT2 的幂> 原始大小为 9,9 -> 9+9 -> 18 -> 向上舍入 -> 32
A = (1,0,3,0,0,0,0,0, 9,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0)
B = (0,5,0,6,0,0,0,0,10,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0)
// | original | correct result | nearest power of 2 |
然后做你想要的DFFT事情......我假设你想做这样的事情:
A' = DFFT(A)
B' = DFFT(B)
C(i)' = A'(i) * B'(i) // i=0..n-1
C= IDFFT(C')
这是 O(n*log(n))
。 不要忘记,如果您使用DFFT(不是 DFT)n = 32 而不是 18!因为 n
必须是 2
的幂才能实现 DFT 的快速算法,如果您想要提高性能而不是查看 DFFT> DFFT(A),DFFT(B) 的权重矩阵它们是相同的所以不需要计算它们两次 ...
关于algorithm - 具有不同指数项的方程式的 FFT,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18940422/
FFT 库(例如 FFTW 或 numpy.fft)通常提供两个函数 fft() 和 ifft()(及其用于实值输入的特殊版本)。这些功能似乎被定义为 ifft(fft(X)) == X 和 fft(
如果我有一个特定大小 M(2 的幂)的 FFT 实现,我如何计算一组大小 P=k*M 的 FFT,其中 k 也是 2 的幂? #define M 256 #define P 1024 comple
下午好! 我正在尝试基于我已有的简单递归 FFT 实现来开发 NTT 算法。 考虑以下代码(coefficients'的长度,让它为m,是2的精确幂): /// /// Calculates the
我正在分析时间序列数据,并希望提取 5 个主要频率分量并将其用作训练机器学习模型的特征。我的数据集是 921 x 10080 。每行是一个时间序列,总共有 921 个。 在探索可能的方法时,我遇到了各
我找不到任何官方文档来证明 scipy.fft 实际上是 numpy.fft.fftpack.fft 的链接。这是显示链接的 iPython session : In [1]: import scip
文档说 np.fft.fft 这样做: Compute the one-dimensional discrete Fourier Transform. 和 np.fft.rfft 这样做: Compu
近一个月来,我一直在与一个非常奇怪的错误作斗争。问你们是我最后的希望。我用 C 编写了一个程序,它集成了 2d Cahn–Hilliard equation在傅里叶(或倒数)空间中使用隐式欧拉 (IE
我一直在制作一个例程,使用 NumPy/Scipy 测量两个光谱之间的相位差。 我已经有了Matlab写的例程,所以我基本上是用NumPy重新实现了函数和相应的单元测试。但是,我发现单元测试失败了,因
我正在研究使用 Renderscript 对大型复杂输入数组执行 FFT。 FFT 是相当标准的,因为它涉及三个循环,但内部循环执行 FFT 中的蝶形运算。因为每个蝴蝶使用数组的不同部分,所以没有明显
我需要通过修改 FFT 结果来均衡音乐样本。 我知道如何获得每个输出虚数的频率,问题是修改这个值以获得“均衡器效果”。 我需要知道如何缩放这个值。 条目大小为 4096 个样本,采样率为 44100
我将在 kiss-fft 之前制定几个计划同时(平行),我可以这样做吗,或者换句话说,kiss-fft 线程安全吗? 谢谢 最佳答案 自述文件: No static data is used. Th
要在频域中插入信号,可以在时域中填充零并执行 FFT。 假设给定向量 X 中的元素数为 N 并且 Y 与 X 相同但在一侧用 N 零填充。然后下面给出相同的结果。 $$\hat{x}(k)=\sum_
我通过相关了解了 DFT 的工作原理,并将其用作理解 FFT 结果的基础。如果我有一个以 44.1kHz 采样的离散信号,那么这意味着如果我要获取 1 秒的数据,我将有 44,100 个样本。为了对其
有人知道 Mayer FFT 的实现吗(我不必花很多时间研究代码)? 我正在尝试执行卷积,ifft 似乎产生了我称之为“镜像”的输出。换句话说,我的内核+信号长度被限制为 N/2 并且占据 n=0..
有人知道 Mayer FFT 的实现吗(我不必花很多时间研究代码)? 我正在尝试执行卷积,ifft 似乎产生了我称之为“镜像”的输出。换句话说,我的内核+信号长度被限制为 N/2 并且占据 n=0..
我有以下代码...请注意#生成正弦曲线下的两行。一个使用比另一个更高的 2pi 精度值,但它们仍然应该给出几乎相同的结果。 import numpy as np import matplotlib.p
我正在努力确保 FFTW 做我认为它应该做的事情,但我遇到了问题。我正在使用 OpenCV 的 cv::Mat。我制作了一个测试程序,给定一个 Mat f,计算 ifft(fft(f)) 并将结果与
我是从事电信项目的计算机程序员。 在我们的项目中,我必须将一系列复数更改为它们的傅立叶变换。因此我需要一个高效的 FFT 代码来满足 C89 标准。 我正在使用以下代码,它运行良好: shor
我目前正在尝试了解 numpy 的 fft 函数。为此,我测试了以下假设: 我有两个函数,f(x) = x^2 和 g(x) = f'(x) = 2*x。根据傅立叶变换定律和 wolfram alph
我一直在使用 FFT,目前正在尝试使用 FFT 从文件中获取声音波形(最终对其进行修改),然后将修改后的波形输出回文件。我得到了声波的 FFT,然后对其使用了反 FFT 函数,但输出文件听起来一点也不
我是一名优秀的程序员,十分优秀!