- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我最近一直在尝试实现用于图像对齐的 Lucas-Kanade 算法,如本文所述:https://www.ri.cmu.edu/pub_files/pub3/baker_simon_2004_1/baker_simon_2004_1.pdf
我已经设法实现了我链接的论文第 4 页中详述的算法,但损失似乎没有收敛。我一直在查看我的代码和我的数学,但似乎无法弄清楚我可能哪里出错了。
到目前为止,我尝试过的是实现整个算法,并重新计算计算扭曲的雅可比行列式,以及对我的代码进行一般检查。
下面是我的代码,以及 Pastebin 上更具可读性的版本:https://pastebin.com/j28mUV65
import cv2
import numpy as np
import matplotlib.pyplot as plt
def calculate_steepest_descent(grad_x_warped, grad_y_warped, h):
rows, columns = grad_x_warped.shape
steepest_descent = np.zeros((rows, columns, 8))
warp_jacobian = np.zeros((2, 8)) # 2 x 8 because it's a homography, would be 2 x 6 if it was affine
current_gradient = np.zeros((1, 2))
# Convert homography matrix into parameter array for better readability with the math functions later
p = h.flatten()
for y in range(rows):
for x in range(columns):
# Calculate Jacobian of the warp at each pixel, which contains the partial derivatives of the
# warp parameters with respect to x and y coordinates, evaluated at the current value
# of parameters
common_denominator = (p[6]*x + p[7]*y + 1)
warp_jacobian[0, 0] = (x) / common_denominator
warp_jacobian[0, 1] = (y) / common_denominator
warp_jacobian[0, 2] = (1) / common_denominator
warp_jacobian[0, 3] = 0
warp_jacobian[0, 4] = 0
warp_jacobian[0, 5] = 0
warp_jacobian[0, 6] = (-(p[0]*(x**2) + p[1]*x*y + p[2]*x)) / (common_denominator ** 2)
warp_jacobian[0, 7] = (-(p[1]*(y**2) + p[0]*x*y + p[2]*y)) / (common_denominator ** 2)
warp_jacobian[1, 0] = 0
warp_jacobian[1, 1] = 0
warp_jacobian[1, 2] = 0
warp_jacobian[1, 3] = (x) / common_denominator
warp_jacobian[1, 4] = (y) / common_denominator
warp_jacobian[1, 5] = (1) / common_denominator
warp_jacobian[1, 6] = (-(p[3]*(x**2) + p[4]*x*y + p[5]*x)) / (common_denominator ** 2)
warp_jacobian[1, 7] = (-(p[4]*(y**2) + p[3]*x*y + p[5]*y)) / (common_denominator ** 2)
# Get the x and y gradient intensity values corresponding to the current pixel location
current_gradient[0, 0] = grad_x_warped[y, x]
current_gradient[0, 1] = grad_y_warped[y, x]
# Calculate full Jacobian (aka steepest descent image) at current pixel value
steepest_descent[y, x, :] = np.dot(current_gradient, warp_jacobian)
return steepest_descent
def calculate_hessian(steepest_descent):
rows, columns, channels = steepest_descent.shape
hessian = np.zeros((channels, channels))
for y in range(rows):
for x in range(columns):
steepest_descent_single = steepest_descent[y, x, :][np.newaxis, :]
steepest_descent_single_transpose = np.transpose(steepest_descent_single)
hessian_current = np.dot(steepest_descent_single_transpose, steepest_descent_single)
hessian += hessian_current
return hessian
def calculate_sd_param_updates(steepest_descent, img_error):
rows, columns, channels = steepest_descent.shape
sd_param_updates = np.zeros((8, 1))
for y in range(rows):
for x in range(columns):
steepest_descent_single = steepest_descent[y, x, :][np.newaxis, :]
steepest_descent_single_transpose = np.transpose(steepest_descent_single)
img_error_single = img_error[y, x]
sd_param_updates += np.dot(steepest_descent_single_transpose, img_error_single)
return sd_param_updates
def calculate_final_param_updates(sd_param_updates, hessian):
hessian_inverse = np.linalg.inv(hessian)
final_param_updates = np.dot(hessian_inverse, sd_param_updates)
return final_param_updates
if __name__ == "__main__":
# Load image
reference = cv2.imread('test.png')
reference = cv2.cvtColor(reference, cv2.COLOR_BGR2GRAY)
# Generate template as small block from within reference image using homography
# 'h' is the ground truth homography for warping reference image onto template image
template_size = (100, 100)
h = np.float32([[1, 0, -100],[0, 1, -100],[0, 0, 1]])
h_ground_truth = h.copy()
template = cv2.warpPerspective(reference, h, template_size)
# Convert template corner points to reference image coordinate plane
template_corners = np.array([[0, 0],[0, 100],[100, 100],[100, 0]])
h_inverse = np.linalg.inv(h)
reference_corners = cv2.perspectiveTransform(np.array([template_corners], dtype='float32'), h_inverse)
# Small perturbation to ground truth homography
h_mod = np.random.uniform(low=-1.0, high=1.0, size=(h.shape))
h_mod = np.array([[1, 1, 1],[1, 1, 1],[1, 1, 1]])
h_mod[0, 0] = h_mod[0, 0] * 0
h_mod[0, 1] = -h_mod[0, 1] * 0
h_mod[0, 2] = h_mod[0, 2] * 10
h_mod[1, 0] = h_mod[1, 0] * 0
h_mod[1, 1] = h_mod[1, 1] * 0
h_mod[1, 2] = h_mod[1, 2] * 10
h_mod[2, 0] = h_mod[2, 0] * 0
h_mod[2, 1] = h_mod[2, 1] * 0
h_mod[2, 2] = h_mod[2, 1] * 0
h = h + h_mod
# Warp reference image to template image based on initial perturbed homography
reference_transformed = cv2.warpPerspective(reference, h, template_size)
# ##############################
# Lucas-Kanade algorithm below
# This is supposed to calculate the homography that undoes the small perturbation
# and returns a homography as close as possible to the ground truth homography
# ##############################
# Precompute image gradients
grad_x = cv2.Sobel(reference,cv2.CV_64F,1,0,ksize=1)
grad_y = cv2.Sobel(reference,cv2.CV_64F,0,1,ksize=1)
# Loop algorithm for given # of steps
for i in range(1000):
# Step 1
# Warp reference image onto coordinate frame of template
reference_transformed = cv2.warpPerspective(reference, h, template_size)
# Step 2
# Compute error image
img_error = template - reference_transformed
# fig_overlay = plt.figure()
# ax1 = fig_overlay.add_subplot(1,3,1)
# plt.imshow(img_warped)
# ax2 = fig_overlay.add_subplot(1,3,2)
# plt.imshow(template)
# ax3 = fig_overlay.add_subplot(1,3,3)
# plt.imshow(img_error)
# plt.show()
# Step 3
# Warp the gradients
grad_x_warped = cv2.warpPerspective(grad_x, h, template_size)
grad_y_warped = cv2.warpPerspective(grad_y, h, template_size)
# Step 4 & 5
# Use Jacobian of warp to calculate steepest descent images
steepest_descent = calculate_steepest_descent(grad_x_warped, grad_y_warped, h)
# fig_overlay = plt.figure()
# ax1 = fig_overlay.add_subplot(1,8,1)
# plt.imshow(steepest_descent[:, :, 0])
# ax2 = fig_overlay.add_subplot(1,8,2)
# plt.imshow(steepest_descent[:, :, 1])
# ax3 = fig_overlay.add_subplot(1,8,3)
# plt.imshow(steepest_descent[:, :, 2])
# ax4 = fig_overlay.add_subplot(1,8,4)
# plt.imshow(steepest_descent[:, :, 3])
# ax5 = fig_overlay.add_subplot(1,8,5)
# plt.imshow(steepest_descent[:, :, 4])
# ax6 = fig_overlay.add_subplot(1,8,6)
# plt.imshow(steepest_descent[:, :, 5])
# ax7 = fig_overlay.add_subplot(1,8,7)
# plt.imshow(steepest_descent[:, :, 6])
# ax8 = fig_overlay.add_subplot(1,8,8)
# plt.imshow(steepest_descent[:, :, 7])
# plt.show()
# Step 6
# Compute Hessian matrix
hessian = calculate_hessian(steepest_descent)
# Step 7
# Compute steepest descent parameter updates by
# dot producting error image with steepest descent images
sd_param_updates = calculate_sd_param_updates(steepest_descent, img_error)
# Step 8
# Compute final parameter updates
final_param_updates = calculate_final_param_updates(sd_param_updates, hessian)
# Step 9
# Update the parameters
h = h.reshape(-1,1)
h[:-1] += final_param_updates
h = h.reshape(3,3)
# Step 10
# Calculate norm of parameter updates
final_param_update_norm = np.linalg.norm(final_param_updates)
print("Final Param Norm: {}".format(final_param_update_norm))
reference_transformed = cv2.warpPerspective(reference, h, template_size)
cv2.imwrite('warps/warp_{}.png'.format(i), reference_transformed)
# Warp source image to destination based on homography
reference_transformed = cv2.warpPerspective(reference, h, template_size)
cv2.imwrite('final_warp.png', reference_transformed)
它应该只需要一个引用图像来测试。
预期的结果是该算法收敛到与我在代码中计算的地面真实单应性相匹配的单应性,但损失似乎反而爆炸了,我最终得到了一个完全不正确的单应性。
最佳答案
这应该是一条评论,因为我不确定这是您问题的全部原因
但它可能是其中的一部分
要求解线性方程组,不要计算逆
hessian_inverse = np.linalg.inv(hessian)
然后乘以它
final_param_updates = np.dot(hessian_inverse, sd_param_updates)
与求解线性方程组通常情况下相比,这既浪费又会导致更多的数值不稳定性。
而是使用方法solve
。
计算逆将重复为单位矩阵的每一列执行求解
所需的一些操作。这些操作都不需要。
关于python - Lucas-Kanade 图像对齐算法实现不收敛?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57169833/
滑动窗口限流 滑动窗口限流是一种常用的限流算法,通过维护一个固定大小的窗口,在单位时间内允许通过的请求次数不超过设定的阈值。具体来说,滑动窗口限流算法通常包括以下几个步骤: 初始化:设置窗口
表达式求值:一个只有+,-,*,/的表达式,没有括号 一种神奇的做法:使用数组存储数字和运算符,先把优先级别高的乘法和除法计算出来,再计算加法和减法 int GetVal(string s){
【算法】前缀和 题目 先来看一道题目:(前缀和模板题) 已知一个数组A[],现在想要求出其中一些数字的和。 输入格式: 先是整数N,M,表示一共有N个数字,有M组询问 接下来有N个数,表示A[1]..
1.前序遍历 根-左-右的顺序遍历,可以使用递归 void preOrder(Node *u){ if(u==NULL)return; printf("%d ",u->val);
先看题目 物品不能分隔,必须全部取走或者留下,因此称为01背包 (只有不取和取两种状态) 看第一个样例 我们需要把4个物品装入一个容量为10的背包 我们可以简化问题,从小到大入手分析 weightva
我最近在一次采访中遇到了这个问题: 给出以下矩阵: [[ R R R R R R], [ R B B B R R], [ B R R R B B], [ R B R R R R]] 找出是否有任
我正在尝试通过 C++ 算法从我的 outlook 帐户发送一封电子邮件,该帐户已经打开并记录,但真的不知道从哪里开始(对于 outlook-c++ 集成),谷歌也没有帮我这么多。任何提示将不胜感激。
我发现自己像这样编写了一个手工制作的 while 循环: std::list foo; // In my case, map, but list is simpler auto currentPoin
我有用于检测正方形的 opencv 代码。现在我想在检测正方形后,代码运行另一个命令。 代码如下: #include "cv.h" #include "cxcore.h" #include "high
我正在尝试模拟一个 matlab 函数“imfill”来填充二进制图像(1 和 0 的二维矩阵)。 我想在矩阵中指定一个起点,并像 imfill 的 4 连接版本那样进行洪水填充。 这是否已经存在于
我正在阅读 Robert Sedgewick 的《C++ 算法》。 Basic recurrences section it was mentioned as 这种循环出现在循环输入以消除一个项目的递
我正在思考如何在我的日历中生成代表任务的数据结构(仅供我个人使用)。我有来自 DBMS 的按日期排序的任务记录,如下所示: 买牛奶(18.1.2013) 任务日期 (2013-01-15) 任务标签(
输入一个未排序的整数数组A[1..n]只有 O(d) :(d int) 计算每个元素在单次迭代中出现在列表中的次数。 map 是balanced Binary Search Tree基于确保 O(nl
我遇到了一个问题,但我仍然不知道如何解决。我想出了如何用蛮力的方式来做到这一点,但是当有成千上万的元素时它就不起作用了。 Problem: Say you are given the followin
我有一个列表列表。 L1= [[...][...][.......].......]如果我在展平列表后获取所有元素并从中提取唯一值,那么我会得到一个列表 L2。我有另一个列表 L3,它是 L2 的某个
我们得到二维矩阵数组(假设长度为 i 和宽度为 j)和整数 k我们必须找到包含这个或更大总和的最小矩形的大小F.e k=7 4 1 1 1 1 1 4 4 Anwser是2,因为4+4=8 >= 7,
我实行 3 类倒制,每周换类。顺序为早类 (m)、晚类 (n) 和下午类 (a)。我固定的订单,即它永远不会改变,即使那个星期不工作也是如此。 我创建了一个函数来获取 ISO 周数。当我给它一个日期时
假设我们有一个输入,它是一个元素列表: {a, b, c, d, e, f} 还有不同的集合,可能包含这些元素的任意组合,也可能包含不在输入列表中的其他元素: A:{e,f} B:{d,f,a} C:
我有一个子集算法,可以找到给定集合的所有子集。原始集合的问题在于它是一个不断增长的集合,如果向其中添加元素,我需要再次重新计算它的子集。 有没有一种方法可以优化子集算法,该算法可以从最后一个计算点重新
我有一个包含 100 万个符号及其预期频率的表格。 我想通过为每个符号分配一个唯一(且前缀唯一)的可变长度位串来压缩这些符号的序列,然后将它们连接在一起以表示序列。 我想分配这些位串,以使编码序列的预
我是一名优秀的程序员,十分优秀!