- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我的数据是一组 n 观察到的对及其频率,即每对 (xi, yi) 对应一些ki,次数(xi, yi) 被观察到。理想情况下,我想为这些对的所有副本的集合计算 Kendall 的 tau 和 Spearman 的 rho,它由 k1 + k2 + ... + kn 对。问题是 k1 + k2 + ... + kn,观察总数, 很大,这样的数据结构无法放入内存。
自然地,我考虑分配第 i 对的频率,ki/(k1 + k< sub>2 + ... + kn),作为其权重,并计算加权集的排名相关性——但我找不到任何工具.在我遇到的排名相关的加权变体中(例如,scipy.stats.weightedtau),权重代表排名的重要性而不是对,这与我的事业无关。 Pearson 的 r 似乎有我需要的权重选项,但它不符合我的目的,因为 x 和 y 没有任何线性关系。我想知道我是否遗漏了关于加权数据点的广义相关性的一些概念。
到目前为止我唯一的想法是缩小k1, k2, ..., kn 乘以一些公因数 c,因此第 i 对的缩放副本数是 [ki/c](此处 [.] 是舍入运算符,因为我们需要每对的副本数为整数)。通过选择 c 使得 [k1/c] + [k2/c] + ... + [k< sub>n/c] 对可以放入内存,然后我们可以计算结果集的相关系数 tau 和 rho。然而,ki 和 kj 可能相差很多数量级,所以 c 对于某些 ki 可能非常大,因此舍入 ki/c 会导致信息丢失。
UPD:可以在具有指定频率权重的数据集上计算 Spearman 的 rho 和 p 值,如下所示:
def frequency_pearsonr(data, frequencies):
"""
Calculates Pearson's r between columns (variables), given the
frequencies of the rows (observations).
:param data: 2-D array with data
:param frequencies: 1-D array with frequencies
:return: 2-D array with pairwise correlations,
2-D array with pairwise p-values
"""
df = frequencies.sum() - 2
Sigma = np.cov(data.T, fweights=frequencies)
sigma_diag = Sigma.diagonal()
Sigma_diag_pairwise_products = np.multiply.outer(sigma_diag, sigma_diag)
# Calculate matrix with pairwise correlations.
R = Sigma / np.sqrt(Sigma_diag_pairwise_products)
# Calculate matrix with pairwise t-statistics. Main diagonal should
# get 1 / 0 = inf.
with np.errstate(divide='ignore'):
T = R / np.sqrt((1 - R * R) / df)
# Calculate matrix with pairwise p-values.
P = 2 * stats.t.sf(np.abs(T), df)
return R, P
def frequency_rank(data, frequencies):
"""
Ranks 1-D data array, given the frequency of each value. Same
values get same "averaged" ranks. Array with ranks is shaped to
match the input data array.
:param data: 1-D array with data
:param frequencies: 1-D array with frequencies
:return: 1-D array with ranks
"""
s = 0
ranks = np.empty_like(data)
# Compute rank for each unique value.
for value in sorted(set(data)):
index_grid = np.ix_(data == value)
# Find total frequency of the value.
frequency = frequencies[index_grid].sum()
ranks[index_grid] = s + 0.5 * (frequency + 1)
s += frequency
return ranks
def frequency_spearmanrho(data, frequencies):
"""
Calculates Spearman's rho between columns (variables), given the
frequencies of the rows (observations).
:param data: 2-D array with data
:param frequencies: 1-D array with frequencies
:return: 2-D array with pairwise correlations,
2-D array with pairwise p-values
"""
# Rank the columns.
ranks = np.empty_like(data)
for i, data_column in enumerate(data.T):
ranks[:, i] = frequency_rank(data_column, frequencies)
# Compute Pearson's r correlation and p-values on the ranks.
return frequency_pearsonr(ranks, frequencies)
# Columns are variables and rows are observations, whose frequencies
# are specified.
data_col1 = np.array([1, 0, 1, 0, 1])
data_col2 = np.array([.67, .25, .75, .2, .6])
data_col3 = np.array([.1, .3, .8, .3, .2])
data = np.array([data_col1, data_col2, data_col3]).T
frequencies = np.array([2, 4, 1, 3, 2])
# Same data, but with observations (rows) actually repeated instead of
# their frequencies being specified.
expanded_data_col1 = np.array([1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1])
expanded_data_col2 = np.array([.67, .67, .25, .25, .25, .25, .75, .2, .2, .2, .6, .6])
expanded_data_col3 = np.array([.1, .1, .3, .3, .3, .3, .8, .3, .3, .3, .2, .2])
expanded_data = np.array([expanded_data_col1, expanded_data_col2, expanded_data_col3]).T
# Compute Spearman's rho for data in both formats, and compare.
frequency_Rho, frequency_P = frequency_spearmanrho(data, frequencies)
Rho, P = stats.spearmanr(expanded_data)
print(frequency_Rho - Rho)
print(frequency_P - P)
上面的特定示例表明这两种方法产生相同的相关性和相同的 p 值:
[[ 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[ 1.11022302e-16 0.00000000e+00 -5.55111512e-17]
[ 0.00000000e+00 -5.55111512e-17 0.00000000e+00]]
[[ 0.00000000e+00 -1.35525272e-19 4.16333634e-17]
[ -9.21571847e-19 0.00000000e+00 -5.55111512e-17]
[ 4.16333634e-17 -5.55111512e-17 0.00000000e+00]]
最佳答案
保罗建议的计算肯德尔 tau 的方法行之有效。您不必将已排序数组的索引分配为等级,但未排序数组的索引同样可以正常工作(如加权 tau 示例所示)。权重也不需要归一化。
常规(未加权)Kendall 的 tau(在“扩展”数据集上):
stats.kendalltau([0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
[.25, .25, .25, .25, .2, .2, .2, .667, .667, .75, .6, .6])
KendalltauResult(correlation=0.7977240352174656, pvalue=0.0034446936330652677)
加权 Kendall 的 tau(在以出现次数作为权重的数据集上):
stats.weightedtau([1, 0, 1, 0, 1],
[.667, .25, .75, .2, .6],
rank=False,
weigher=lambda r: [2, 4, 1, 3, 2][r],
additive=False)
WeightedTauResult(correlation=0.7977240352174656, pvalue=nan)
现在,由于 weightedtau 实现的特殊性,永远不会计算 p 值。我们可以使用最初提供的缩小出现次数的技巧来近似 p 值,但我非常感谢其他方法。根据可用内存量做出有关算法行为的决策对我来说似乎很痛苦。
关于python - 在 Python 中与频率权重进行排名相关,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46260215/
我需要将文本放在 中在一个 Div 中,在另一个 Div 中,在另一个 Div 中。所以这是它的样子: #document Change PIN
奇怪的事情发生了。 我有一个基本的 html 代码。 html,头部, body 。(因为我收到了一些反对票,这里是完整的代码) 这是我的CSS: html { backgroun
我正在尝试将 Assets 中的一组图像加载到 UICollectionview 中存在的 ImageView 中,但每当我运行应用程序时它都会显示错误。而且也没有显示图像。 我在ViewDidLoa
我需要根据带参数的 perl 脚本的输出更改一些环境变量。在 tcsh 中,我可以使用别名命令来评估 perl 脚本的输出。 tcsh: alias setsdk 'eval `/localhome/
我使用 Windows 身份验证创建了一个新的 Blazor(服务器端)应用程序,并使用 IIS Express 运行它。它将显示一条消息“Hello Domain\User!”来自右上方的以下 Ra
这是我的方法 void login(Event event);我想知道 Kotlin 中应该如何 最佳答案 在 Kotlin 中通配符运算符是 * 。它指示编译器它是未知的,但一旦知道,就不会有其他类
看下面的代码 for story in book if story.title.length < 140 - var story
我正在尝试用 C 语言学习字符串处理。我写了一个程序,它存储了一些音乐轨道,并帮助用户检查他/她想到的歌曲是否存在于存储的轨道中。这是通过要求用户输入一串字符来完成的。然后程序使用 strstr()
我正在学习 sscanf 并遇到如下格式字符串: sscanf("%[^:]:%[^*=]%*[*=]%n",a,b,&c); 我理解 %[^:] 部分意味着扫描直到遇到 ':' 并将其分配给 a。:
def char_check(x,y): if (str(x) in y or x.find(y) > -1) or (str(y) in x or y.find(x) > -1):
我有一种情况,我想将文本文件中的现有行包含到一个新 block 中。 line 1 line 2 line in block line 3 line 4 应该变成 line 1 line 2 line
我有一个新项目,我正在尝试设置 Django 调试工具栏。首先,我尝试了快速设置,它只涉及将 'debug_toolbar' 添加到我的已安装应用程序列表中。有了这个,当我转到我的根 URL 时,调试
在 Matlab 中,如果我有一个函数 f,例如签名是 f(a,b,c),我可以创建一个只有一个变量 b 的函数,它将使用固定的 a=a1 和 c=c1 调用 f: g = @(b) f(a1, b,
我不明白为什么 ForEach 中的元素之间有多余的垂直间距在 VStack 里面在 ScrollView 里面使用 GeometryReader 时渲染自定义水平分隔线。 Scrol
我想知道,是否有关于何时使用 session 和 cookie 的指南或最佳实践? 什么应该和什么不应该存储在其中?谢谢! 最佳答案 这些文档很好地了解了 session cookie 的安全问题以及
我在 scipy/numpy 中有一个 Nx3 矩阵,我想用它制作一个 3 维条形图,其中 X 轴和 Y 轴由矩阵的第一列和第二列的值、高度确定每个条形的 是矩阵中的第三列,条形的数量由 N 确定。
假设我用两种不同的方式初始化信号量 sem_init(&randomsem,0,1) sem_init(&randomsem,0,0) 现在, sem_wait(&randomsem) 在这两种情况下
我怀疑该值如何存储在“WORD”中,因为 PStr 包含实际输出。? 既然Pstr中存储的是小写到大写的字母,那么在printf中如何将其给出为“WORD”。有人可以吗?解释一下? #include
我有一个 3x3 数组: var my_array = [[0,1,2], [3,4,5], [6,7,8]]; 并想获得它的第一个 2
我意识到您可以使用如下方式轻松检查焦点: var hasFocus = true; $(window).blur(function(){ hasFocus = false; }); $(win
我是一名优秀的程序员,十分优秀!