gpt4 book ai didi

python - Durand-kerner 实现不起作用

转载 作者:塔克拉玛干 更新时间:2023-11-03 03:53:48 24 4
gpt4 key购买 nike

Durand-Kerner 算法 ( here ) 的这种实现有什么问题?

def durand_kerner(poly, start=complex(.4, .9), epsilon=10**-16):#float('-inf')):
roots = []
for e in xrange(poly.degree):
roots.append(start ** e)
while True:
new = []
for i, r in enumerate(roots):
new_r = r - (poly(r))/(reduce(operator.mul, [(r - r_1) for j, r_1 in enumerate(roots) if i != j]))
new.append(new_r)
if all(n == roots[i] or abs(n - roots[i]) < epsilon for i, n in enumerate(new)):
return new
roots = new

当我尝试时,我必须用 KeyboardInterrupt 停止它,因为它不会停止!
polypypol 库的 Polynomial 实例。

先谢谢你,魔方

编辑:使用 numpy 多项式需要 9 次迭代:

In [1]: import numpy as np

In [2]: roots.d1(np.poly1d([1, -3, 3, -5]))
3
[(1.3607734793516519+2.0222302921553128j), (-1.3982133295376746-0.69356635962504309j), (3.0374398501860234-1.3286639325302696j)]
[(0.98096328371966801+1.3474626910848715j), (-0.3352519326012724-0.64406860772816388j), (2.3542886488816044-0.70339408335670761j)]
[(0.31718054925650596+0.93649454851955749j), (0.49001572078718736-0.9661410790307261j), (2.1928037299563066+0.029646530511168612j)]
[(0.20901563897345796+1.5727420147652911j), (0.041206038662691125-1.5275192097633465j), (2.7497783223638508-0.045222805001944255j)]
[(0.21297050700971876+1.3948274731404162j), (0.18467846583682396-1.3845653821841168j), (2.6023510271534573-0.010262090956299326j)]
[(0.20653075193800668+1.374878742771485j), (0.20600107336130213-1.3746529207714699j), (2.5874681747006911-0.00022582200001499547j)]
[(0.20629950692533283+1.3747296033941407j), (0.20629947661265013-1.374729584400741j), (2.5874010164620169-1.899339978055233e-08j)]
[(0.20629947401589896+1.3747296369986031j), (0.20629947401590082-1.3747296369986042j), (2.5874010519682002+9.1830687539942581e-16j)]
[(0.20629947401590029+1.3747296369986026j), (0.20629947401590026-1.3747296369986026j), (2.5874010519681994+1.1832913578315177e-30j)]
Out[2]:
[(0.20629947401590029+1.3747296369986026j),
(0.20629947401590029-1.3747296369986026j),
(2.5874010519681994+0j)]

使用 pypol 多项式它永远不会完成(这可能是 pypol 中的一个错误):

In [3]: roots.d2(poly1d([1, -3, 3, -5]))
^C---------------------------------------------------------------------------
KeyboardInterrupt

但是我找不到错误!!

EDIT2:将 __call__ 方法与 Martin 的 Poly 进行比较:

>>> p = Poly(-5, 3, -3, 1)
>>> from pypol import poly1d
>>> p2 = poly1d([1, -3, 3, -5])

>>> for i in xrange(-100000, 100000):
assert p(i) == p2(i)


>>>
>>> for i in xrange(-10000, 10000):
assert p(complex(1, i)) == p2(complex(1, i))


>>> for i in xrange(-10000, 10000):
assert p(complex(i, i)) == p2(complex(i, i))


>>>

EDIT3:如果根不是复数,pypol 可以正常工作:

In [1]: p = pypol.funcs.from_roots([4, -2, 443, -11212])

In [2]: durand_kerner(p)
Out[2]: [(4+0j), (443+0j), (-2+0j), (-11212+0j)]

所以只有当根是复数时它才有效!

EDIT4:我为 numpy 多项式编写了一个略有不同的实现,并发现在一次迭代后(维基百科多项式的)根不同:

In [4]: d1(numpyp.poly1d([1, -3, 3, -5]))
Out[4]:
[(0.98096328371966801+1.3474626910848715j),
(-0.3352519326012724-0.64406860772816388j),
(2.3542886488816044-0.70339408335670761j)]

In [5]: d2(pypol.poly1d([1, -3, 3, -5]))
Out[5]:
[(0.9809632837196679+1.3474626910848717j),
(-0.33525193260127306-0.64406860772816377j),
(2.3542886488816048-0.70339408335670772j)] ## here

EDIT5:嘿!如果我将行: if all(n == roots[i] ... ) 更改为 if all(str(n) == str(roots[i]) ... ) 它完成并返回正确的根!!!

In [9]: p = pypol.poly1d([1, -3, 3, -5])

In [10]: roots.durand_kerner(p)
Out[10]:
[(0.20629947401590029+1.3747296369986026j),
(0.20629947401590013-1.3747296369986026j),
(2.5874010519681994+0j)]

但问题是:为什么它适用于不同的复数比较??

更新
现在它可以工作了,我已经做了一些测试:

In [1]: p = pypol.poly1d([1, -3, 3, -1])

In [2]: p
Out[2]: + x^3 - 3x^2 + 3x - 1

In [3]: pypol.roots.cubic(p)
Out[3]: (1.0, 1.0, 1.0)

In [4]: durand_kerner(p)
Out[4]:
((1+0j),
(1.0000002484566535-2.708692281244913e-17j),
(0.99999975147728026+2.9792265510301965e-17j))

In [5]: q = x ** 3 - 1

In [6]: q
Out[6]: + x^3 - 1

In [7]: pypol.roots.cubic(q)
Out[7]: (1.0, (-0.5+0.8660254037844386j), (-0.5-0.8660254037844386j))

In [8]: durand_kerner(q)
Out[8]: ((1+0j), (-0.5-0.8660254037844386j), (-0.5+0.8660254037844386j))

最佳答案

你的算法看起来不错,它适用于维基百科中的示例

import operator
class Poly:
def __init__(self, *koeff):
self.koeff = koeff
self.degree = len(koeff)-1

def __call__(self, val):
res = 0
x = 1
for k in self.koeff:
res += x*k
x *= val
return res

def durand_kerner(poly, start=complex(.4, .9), epsilon=10**-16):#float('-inf')):
roots = []
for e in xrange(poly.degree):
roots.append(start ** e)
while True:
new = []
for i, r in enumerate(roots):
new_r = r - (poly(r))/(reduce(operator.mul, [(r - r_1)
for j, r_1 in enumerate(roots) if i != j]))
new.append(new_r)
if all((n == roots[i] or abs(n - roots[i]) < epsilon) for i, n in enumerate(new)):
return new
roots = new

print durand_kerner(Poly(-5,3,-3,1))

给予

[(0.20629947401590026+1.3747296369986026j), 
(0.20629947401590026-1.3747296369986026j),
(2.5874010519681994+8.6361685550944446e-78j)]

关于python - Durand-kerner 实现不起作用,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/4057684/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com