gpt4 book ai didi

algorithm - Pandas:求解时间序列数据集的最高值阈值

转载 作者:塔克拉玛干 更新时间:2023-11-03 03:41:33 26 4
gpt4 key购买 nike

Givens: 我有一组一天的时间序列数据,比如 96 个值。我有一个累积值,比如在给定时间段内有 101 个单位。

问题:我需要找到阈值 X,其中所有高于该阈值的值总和为给定的累积值 101。请参见下图的视觉效果:

Sample Day Chart

  • X 值(黑线)是所需的阈值
  • 101(曲线下的红色区域)是给定的累计值
  • 蓝线是时间序列数据

约束:我必须多次执行此计算(一年中的每一天),因此最好避免迭代,但不是必需的。

示例数据:

DateTime    Usage_KWH
1/1/2015 0:15 10.32
1/1/2015 0:30 10.56
1/1/2015 0:45 9.84
1/1/2015 1:00 9.36
1/1/2015 1:15 10.32
1/1/2015 1:30 9.6
1/1/2015 1:45 9.6
1/1/2015 2:00 10.32
1/1/2015 2:15 9.84
1/1/2015 2:30 9.6
1/1/2015 2:45 10.08
1/1/2015 3:00 9.36
1/1/2015 3:15 9.84
1/1/2015 3:30 10.32
1/1/2015 3:45 9.84
1/1/2015 4:00 9.84
1/1/2015 4:15 10.08
1/1/2015 4:30 9.6
1/1/2015 4:45 9.6
1/1/2015 5:00 10.8
1/1/2015 5:15 9.6
1/1/2015 5:30 9.84
1/1/2015 5:45 14.76
1/1/2015 6:00 14.4
1/1/2015 6:15 14.76
1/1/2015 6:30 15.12
1/1/2015 6:45 14.4
1/1/2015 7:00 14.4
1/1/2015 7:15 14.04
1/1/2015 7:30 12.96
1/1/2015 7:45 14.04
1/1/2015 8:00 12.6
1/1/2015 8:15 12.96
1/1/2015 8:30 14.04
1/1/2015 8:45 12.96
1/1/2015 9:00 17.28
1/1/2015 9:15 17.28
1/1/2015 9:30 17.76
1/1/2015 9:45 17.28
1/1/2015 10:00 17.76
1/1/2015 10:15 16.8
1/1/2015 10:30 17.28
1/1/2015 10:45 19.68
1/1/2015 11:00 17.28
1/1/2015 11:15 16.8
1/1/2015 11:30 16.8
1/1/2015 11:45 17.28
1/1/2015 12:00 16.8
1/1/2015 12:15 17.28
1/1/2015 12:30 17.28
1/1/2015 12:45 16.8
1/1/2015 13:00 17.28
1/1/2015 13:15 16.8
1/1/2015 13:30 16.8
1/1/2015 13:45 17.28
1/1/2015 14:00 25.92
1/1/2015 14:15 25.2
1/1/2015 14:30 25.2
1/1/2015 14:45 25.2
1/1/2015 15:00 25.2
1/1/2015 15:15 25.92
1/1/2015 15:30 25.2
1/1/2015 15:45 25.92
1/1/2015 16:00 25.92
1/1/2015 16:15 23.76
1/1/2015 16:30 23.76
1/1/2015 16:45 23.76
1/1/2015 17:00 24.48
1/1/2015 17:15 25.92
1/1/2015 17:30 8.88
1/1/2015 17:45 9.12
1/1/2015 18:00 8.88
1/1/2015 18:15 9.6
1/1/2015 18:30 8.88
1/1/2015 18:45 9.12
1/1/2015 19:00 9.12
1/1/2015 19:15 9.6
1/1/2015 19:30 9.12
1/1/2015 19:45 8.88
1/1/2015 20:00 9.12
1/1/2015 20:15 9.36
1/1/2015 20:30 9.12
1/1/2015 20:45 8.88
1/1/2015 21:00 6
1/1/2015 21:15 6
1/1/2015 21:30 6
1/1/2015 21:45 4
1/1/2015 22:00 5
1/1/2015 22:15 6
1/1/2015 22:30 7
1/1/2015 22:45 5
1/1/2015 23:00 7
1/1/2015 23:15 4
1/1/2015 23:30 6
1/1/2015 23:45 5

我糟糕的迭代代码:

time_series_df = pd.DataFrame(time_series_list)

#Iterative approach taking 10 steps
for x in (time_series_df.max, time_series_df.min, -(time_series_df.max)/10):
#Getting values above an arbitrary threshold
temp = time_series_df.query('Usage_KWH > @x')
#If the difference above threshold and aggregate sum for the day are less than given cumulative value then try again
if time_series_df.sum - temp < 101:
final_threshold = temp
#print the highest value that did not exceed 101
print('final answer', final_threshold)

额外:我尝试使用 clip_upper、rank、cumsum、quantile 和 nlargest 的变体。我正在使用 Pandas 0.18

最佳答案

此处的技巧是对数据进行排序。这是一种方法。可能会提高速度!

df2           = df.sort_values(['Usage_KWH'], ascending=[False]).reset_index()
df2['KWHcum'] = df2['Usage_KWH'].cumsum()/ (df2.index+1)
df2["dif"] = np.round( df2['KWHcum'] - df2['Usage_KWH'], 3)*(df2.index+1)
df2

# index DateTime Usage_KWH KWHcum dif
# 0 1/1/2015 14:00 25.92 25.920000 0.0000
# 1 1/1/2015 16:00 25.92 25.920000 0.0000
# 2 1/1/2015 15:45 25.92 25.920000 0.0000
# 3 1/1/2015 15:15 25.92 25.920000 0.0000
# 4 1/1/2015 17:15 25.92 25.920000 0.0000
# 5 1/1/2015 14:45 25.20 25.800000 3.6000
# 6 1/1/2015 14:15 25.20 25.714286 3.6001
# 7 1/1/2015 15:30 25.20 25.650000 3.6000
# 8 1/1/2015 14:30 25.20 25.600000 3.6000
# 9 1/1/2015 15:00 25.20 25.560000 3.6000
# 10 1/1/2015 17:00 24.48 25.461818 10.7998
# 11 1/1/2015 16:30 23.76 25.320000 18.7200
# 12 1/1/2015 16:45 23.76 25.200000 18.7200
# 13 1/1/2015 16:15 23.76 25.097143 18.7194
# 14 1/1/2015 10:45 19.68 24.736000 75.8400
# 15 1/1/2015 9:30 17.76 24.300000 104.6400
# 16 1/1/2015 10:00 17.76 23.915294 104.6401
# 17 1/1/2015 11:00 17.28 23.546667 112.8006
# 18 1/1/2015 9:45 17.28 23.216842 112.7992
# 19 1/1/2015 12:30 17.28 22.920000 112.8000
# 20 1/1/2015 10:30 17.28 22.651429 112.7994
# 21 1/1/2015 12:15 17.28 22.407273 112.8006
# 22 1/1/2015 13:00 17.28 22.184348 112.7989
# 23 1/1/2015 11:45 17.28 21.980000 112.8000
# 24 1/1/2015 13:45 17.28 21.792000 112.8000
# 25 1/1/2015 9:00 17.28 21.618462 112.8010
# 26 1/1/2015 9:15 17.28 21.457778 112.8006
# 27 1/1/2015 11:15 16.80 21.291429 125.7592
# 28 1/1/2015 11:30 16.80 21.136552 125.7614
# 29 1/1/2015 10:15 16.80 20.992000 125.7600

df2 = df2[df2['dif'] < 101]
print df2['Usage_KWH'].tail(1)
# 14 19.68
# Name: Usage_KWH, dtype: float64

df2 = df2[df2['dif'] < 141]
print df2['Usage_KWH'].tail(1)
#33 16.8
#Name: Usage_KWH, dtype: float64

关于algorithm - Pandas:求解时间序列数据集的最高值阈值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38134690/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com