gpt4 book ai didi

python - PageRank 计算结果不正确

转载 作者:塔克拉玛干 更新时间:2023-11-03 03:35:55 24 4
gpt4 key购买 nike

我提到了 PageRank - Wikipedia并使用以下等式代数计算 PageRank,但我从 nx.pagerank_numpy 得到了不同的结果.

例如(图片来自维基百科),

我明白了,

# 'A', 'B', 'C', 'D', 'E', 'F'
[[ 0.028]
[ 0.324]
[ 0.289]
[ 0.033]
[ 0.068]
[ 0.033]]

为什么结果不同?


这是源代码。

import networkx as nx
import numpy as np

# Step 1: Build up a graph
G = build_graph_wikipedia_pagerank_example()

# Step 2: PageRank calculation

# Part 1: \mathbf {1} is the column vector of length N containing only ones.
N = len(G.nodes()) # N = 11
column_vector = np.ones((N, 1), dtype=np.int)
#print(column_vector)

# Part 2: Matrix M
# Adjacency matrix A
nodelist = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K'] # sorted(G.nodes())
A = nx.to_numpy_matrix(G, nodelist)

# K is the diagonal matrix with the outdegrees in the diagonal.
list_outdegree = map(operator.itemgetter(1), sorted(G.out_degree().items()))
K = np.diag(list_outdegree)

K_inv = np.linalg.pinv(K)

# Matrix M
M = (K_inv * A).transpose()

# Part 3: PageRank calculation
d = 0.85
I = np.identity(N)
R = np.linalg.pinv(I - d*M) * (1-d)/N * column_vector

为了建立图表,我使用,

def build_graph_wikipedia_pagerank_example():
"""
Build a graph for https://en.wikipedia.org/wiki/File:PageRanks-Example.svg
"""

G = nx.DiGraph()

# A

# B -->
G.add_path(['B', 'C'])

# C -->
G.add_path(['C', 'B'])

# D -->
G.add_path(['D', 'A'])
G.add_path(['D', 'B'])

# E -->
G.add_path(['E', 'B'])
G.add_path(['E', 'D'])
G.add_path(['E', 'F'])

# F -->
G.add_path(['F', 'B'])
G.add_path(['F', 'E'])

# G -->
G.add_path(['G', 'B'])
G.add_path(['G', 'E'])

# H -->
G.add_path(['H', 'B'])
G.add_path(['H', 'E'])

# I -->
G.add_path(['I', 'B'])
G.add_path(['I', 'E'])

# J -->
G.add_path(['J', 'E'])

# J -->
G.add_path(['K', 'E'])

return G

最佳答案

您只需对通过矩阵方程获得的页面排名进行归一化,因为页面排名之和应为 1。

R = R / sum(R)
print R
#[[ 0.03278149]
# [ 0.38440095]
# [ 0.34291029]
# [ 0.03908709]
# [ 0.08088569]
# [ 0.03908709]
# [ 0.01616948]
# [ 0.01616948]
# [ 0.01616948]
# [ 0.01616948]
# [ 0.01616948]]
print nx.pagerank_numpy(G, alpha=d)
#{'A': 0.032781493159344234, 'C': 0.34291028550837976, 'B': 0.3844009488135542, 'E': 0.08088569323449775, 'D': 0.03908709209996617, 'G': 0.016169479016858397, 'F': 0.03908709209996617, 'I': 0.016169479016858397, 'H': 0.016169479016858397, 'K': 0.016169479016858397, 'J': 0.016169479016858397}

关于python - PageRank 计算结果不正确,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42224302/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com