- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我正在努力从 BufferedImage 中快速有效地提取矩形中的单词。
例如,我有以下页面:(编辑!)扫描图像,因此它可能包含噪声、倾斜和失真。
如何在没有矩形的情况下提取以下图像:(编辑!)我可以使用 OpenCv 或任何其他库,但我对高级图像处理技术绝对陌生。
编辑
我使用了 karlphillip
建议的方法 here而且效果不错。
这是代码:
package ro.ubbcluj.detection;
import java.awt.FlowLayout;
import java.awt.image.BufferedImage;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.List;
import javax.imageio.ImageIO;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.WindowConstants;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfByte;
import org.opencv.core.MatOfPoint;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.highgui.Highgui;
import org.opencv.imgproc.Imgproc;
public class RectangleDetection {
public static void main(String[] args) throws IOException {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
Mat image = loadImage();
Mat grayscale = convertToGrayscale(image);
Mat treshold = tresholdImage(grayscale);
List<MatOfPoint> contours = findContours(treshold);
Mat contoursImage = fillCountours(contours, grayscale);
Mat grayscaleWithContours = convertToGrayscale(contoursImage);
Mat tresholdGrayscaleWithContours = tresholdImage(grayscaleWithContours);
Mat eroded = erodeAndDilate(tresholdGrayscaleWithContours);
List<MatOfPoint> squaresFound = findSquares(eroded);
Mat squaresDrawn = Rectangle.drawSquares(grayscale, squaresFound);
BufferedImage convertedImage = convertMatToBufferedImage(squaresDrawn);
displayImage(convertedImage);
}
private static List<MatOfPoint> findSquares(Mat eroded) {
return Rectangle.findSquares(eroded);
}
private static Mat erodeAndDilate(Mat input) {
int erosion_type = Imgproc.MORPH_RECT;
int erosion_size = 5;
Mat result = new Mat();
Mat element = Imgproc.getStructuringElement(erosion_type, new Size(2 * erosion_size + 1, 2 * erosion_size + 1));
Imgproc.erode(input, result, element);
Imgproc.dilate(result, result, element);
return result;
}
private static Mat convertToGrayscale(Mat input) {
Mat grayscale = new Mat();
Imgproc.cvtColor(input, grayscale, Imgproc.COLOR_BGR2GRAY);
return grayscale;
}
private static Mat fillCountours(List<MatOfPoint> contours, Mat image) {
Mat result = image.clone();
Imgproc.cvtColor(result, result, Imgproc.COLOR_GRAY2RGB);
for (int i = 0; i < contours.size(); i++) {
Imgproc.drawContours(result, contours, i, new Scalar(255, 0, 0), -1, 8, new Mat(), 0, new Point());
}
return result;
}
private static List<MatOfPoint> findContours(Mat image) {
List<MatOfPoint> contours = new ArrayList<>();
Mat hierarchy = new Mat();
Imgproc.findContours(image, contours, hierarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_NONE);
return contours;
}
private static Mat detectLinesHough(Mat img) {
Mat lines = new Mat();
int threshold = 80;
int minLineLength = 10;
int maxLineGap = 5;
double rho = 0.4;
Imgproc.HoughLinesP(img, lines, rho, Math.PI / 180, threshold, minLineLength, maxLineGap);
Imgproc.cvtColor(img, img, Imgproc.COLOR_GRAY2RGB);
System.out.println(lines.cols());
for (int x = 0; x < lines.cols(); x++) {
double[] vec = lines.get(0, x);
double x1 = vec[0], y1 = vec[1], x2 = vec[2], y2 = vec[3];
Point start = new Point(x1, y1);
Point end = new Point(x2, y2);
Core.line(lines, start, end, new Scalar(0, 255, 0), 3);
}
return img;
}
static BufferedImage convertMatToBufferedImage(Mat mat) throws IOException {
MatOfByte matOfByte = new MatOfByte();
Highgui.imencode(".jpg", mat, matOfByte);
byte[] byteArray = matOfByte.toArray();
InputStream in = new ByteArrayInputStream(byteArray);
return ImageIO.read(in);
}
static void displayImage(BufferedImage image) {
JFrame frame = new JFrame();
frame.getContentPane().setLayout(new FlowLayout());
frame.getContentPane().add(new JLabel(new ImageIcon(image)));
frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
frame.pack();
frame.setVisible(true);
}
private static Mat tresholdImage(Mat img) {
Mat treshold = new Mat();
Imgproc.threshold(img, treshold, 225, 255, Imgproc.THRESH_BINARY_INV);
return treshold;
}
private static Mat tresholdImage2(Mat img) {
Mat treshold = new Mat();
Imgproc.threshold(img, treshold, -1, 255, Imgproc.THRESH_BINARY_INV + Imgproc.THRESH_OTSU);
return treshold;
}
private static Mat loadImage() {
return Highgui
.imread("E:\\Programs\\Eclipse Workspace\\LicentaWorkspace\\OpenCvRectangleDetection\\src\\img\\form3.jpg");
}
和 Rectangle 类
package ro.ubbcluj.detection;
import java.awt.image.BufferedImage;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.imgproc.Imgproc;
public class Rectangle {
static List<MatOfPoint> findSquares(Mat input) {
Mat pyr = new Mat();
Mat timg = new Mat();
// Down-scale and up-scale the image to filter out small noises
Imgproc.pyrDown(input, pyr, new Size(input.cols() / 2, input.rows() / 2));
Imgproc.pyrUp(pyr, timg, input.size());
// Apply Canny with a threshold of 50
Imgproc.Canny(timg, timg, 0, 50, 5, true);
// Dilate canny output to remove potential holes between edge segments
Imgproc.dilate(timg, timg, new Mat(), new Point(-1, -1), 1);
// find contours and store them all as a list
Mat hierarchy = new Mat();
List<MatOfPoint> contours = new ArrayList<>();
Imgproc.findContours(timg, contours, hierarchy, Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);
List<MatOfPoint> squaresResult = new ArrayList<MatOfPoint>();
for (int i = 0; i < contours.size(); i++) {
// Approximate contour with accuracy proportional to the contour
// perimeter
MatOfPoint2f contour = new MatOfPoint2f(contours.get(i).toArray());
MatOfPoint2f approx = new MatOfPoint2f();
double epsilon = Imgproc.arcLength(contour, true) * 0.02;
boolean closed = true;
Imgproc.approxPolyDP(contour, approx, epsilon, closed);
List<Point> approxCurveList = approx.toList();
// Square contours should have 4 vertices after approximation
// relatively large area (to filter out noisy contours)
// and be convex.
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
boolean aproxSize = approx.rows() == 4;
boolean largeArea = Math.abs(Imgproc.contourArea(approx)) > 200;
boolean isConvex = Imgproc.isContourConvex(new MatOfPoint(approx.toArray()));
if (aproxSize && largeArea && isConvex) {
double maxCosine = 0;
for (int j = 2; j < 5; j++) {
// Find the maximum cosine of the angle between joint edges
double cosine = Math.abs(getAngle(approxCurveList.get(j % 4), approxCurveList.get(j - 2),
approxCurveList.get(j - 1)));
maxCosine = Math.max(maxCosine, cosine);
}
// If cosines of all angles are small
// (all angles are ~90 degree) then write quandrange
// vertices to resultant sequence
if (maxCosine < 0.3) {
Point[] points = approx.toArray();
squaresResult.add(new MatOfPoint(points));
}
}
}
return squaresResult;
}
// angle: helper function.
// Finds a cosine of angle between vectors from pt0->pt1 and from pt0->pt2.
private static double getAngle(Point point1, Point point2, Point point0) {
double dx1 = point1.x - point0.x;
double dy1 = point1.y - point0.y;
double dx2 = point2.x - point0.x;
double dy2 = point2.y - point0.y;
return (dx1 * dx2 + dy1 * dy2) / Math.sqrt((dx1 * dx1 + dy1 * dy1) * (dx2 * dx2 + dy2 * dy2) + 1e-10);
}
public static Mat drawSquares(Mat image, List<MatOfPoint> squares) {
Mat result = new Mat();
Imgproc.cvtColor(image, result, Imgproc.COLOR_GRAY2RGB);
int thickness = 2;
Core.polylines(result, squares, false, new Scalar(0, 255, 0), thickness);
return result;
}
}
结果示例:
...不过,它对较小的图像效果不是很好:
也许可以建议一些改进?或者如果我有一批图像要处理,如何使算法更快?
最佳答案
我使用 opencv 在 c++ 中完成了以下程序(我不熟悉 java+opencv)。我已经包含了您提供的两个示例图像的输出。对于其他一些图像,您可能需要在轮廓过滤部分调整阈值。
#include "stdafx.h"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int _tmain(int argc, _TCHAR* argv[])
{
// load image as grayscale
Mat im = imread(INPUT_FILE, CV_LOAD_IMAGE_GRAYSCALE);
Mat morph;
// morphological closing with a column filter : retain only large vertical edges
Mat morphKernelV = getStructuringElement(MORPH_RECT, Size(1, 7));
morphologyEx(im, morph, MORPH_CLOSE, morphKernelV);
Mat bwV;
// binarize: will contain only large vertical edges
threshold(morph, bwV, 0, 255.0, CV_THRESH_BINARY | CV_THRESH_OTSU);
// morphological closing with a row filter : retain only large horizontal edges
Mat morphKernelH = getStructuringElement(MORPH_RECT, Size(7, 1));
morphologyEx(im, morph, MORPH_CLOSE, morphKernelH);
Mat bwH;
// binarize: will contain only large horizontal edges
threshold(morph, bwH, 0, 255.0, CV_THRESH_BINARY | CV_THRESH_OTSU);
// combine the virtical and horizontal edges
Mat bw = bwV & bwH;
threshold(bw, bw, 128.0, 255.0, CV_THRESH_BINARY_INV);
// just for illustration
Mat rgb;
cvtColor(im, rgb, CV_GRAY2BGR);
// find contours
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
findContours(bw, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
// filter contours by area to obtain boxes
double areaThL = bw.rows * .04 * bw.cols * .06;
double areaThH = bw.rows * .7 * bw.cols * .7;
double area = 0;
for(int idx = 0; idx >= 0; idx = hierarchy[idx][0])
{
area = contourArea(contours[idx]);
if (area > areaThL && area < areaThH)
{
drawContours(rgb, contours, idx, Scalar(0, 0, 255), 2, 8, hierarchy);
// take bounding rectangle. better to use filled countour as a mask
// to extract the rectangle because then you won't get any stray elements
Rect rect = boundingRect(contours[idx]);
cout << "rect: (" << rect.x << ", " << rect.y << ") " << rect.width << " x " << rect.height << endl;
Mat imRect(im, rect);
}
}
return 0;
}
第一张图片的结果:
第二张图片的结果:
关于java - 从文本中提取矩形中的单词,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/23289387/
我正在做一个业余爱好项目,使用 Ruby、PHP 或 Java 来抓取 ASP.net 网站的内容。例如,如果网站 url“www.myaspnet.com/home.aspx”。我想从 home.a
如果我有这些字符串: mystrings <- c("X2/D2/F4", "X10/D9/F4", "X3/D22/F4",
我有以下数据集 > head(names$SAMPLE_ID) [1] "Bacteria|Proteobacteria|Gammaproteobacteria|Pseudomonadales|Mor
设置: 3个域类A,B和C。A和B在插件中。 C在依赖于此插件的应用程序中。 class A{ B b static mapping = { b fetch: 'joi
我不知道如何提取 XML 文件中的开始标记元素名称。我很接近〜意味着没有错误,我正在获取标签名称,但我正在获取标签名称加上信息。我得到的是: {http://www.publishing.org}au
我有一个字符串 x <- "Name of the Student? Michael Sneider" 我想从中提取“Michael Sneider”。 我用过: str_extract_all(x,
我有一个如下所示的文本文件: [* content I want *] [ more content ] 我想读取该文件并能够提取我想要的内容。我能做的最好的事情如下,但它会返回 [更多内容] 请注意
假设我有一个项目集合 $collection = array( 'item1' => array( 'post' => $post, 'ca
我正在寻找一种过滤文本文件的方法。我有许多文件夹名称,其中包含许多文本文件,文本文件有几个没有人员,每个人员有 10 个群集/组(我在这里只显示了 3 个)。但是每个组/簇可能包含几个原语(我在这里展
我已经编写了一个从某个网页中提取网址的代码,我面临的问题是它不会以网页上相同的方式提取网址,我的意思是如果该网址位于某些网页中法语,它不会按原样提取它。我该如何解决这个问题? import reque
如何在 C# 中提取 ZipFile?(ZipFile 是包含文件和目录) 最佳答案 为此使用工具。类似于 SharpZip .据我所知 - .NET 不支持开箱即用的 ZIP 文件。 来自 here
我有一个表达: [training_width]:lofmimics 我要提取[]之间的内容,在上面的例子中我要 training_width 我试过以下方法: QRegularExpression
我正在尝试创建一个 Bash 脚本,该脚本将从命令行给出的最后一个参数提取到一个变量中以供其他地方使用。这是我正在处理的脚本: #!/bin/bash # compact - archive and
我正在寻找一个 JavaScript 函数/正则表达式来从 URI 中提取 *.com...(在客户端完成) 它应该适用于以下情况: siphone.com = siphone.com qwr.sip
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 8 年前。 Improve this qu
编辑:添加了实际的 JSON 对象和代码以供审查 我有这种格式的 JSON(只是这种层次结构,假设 JSON 正常工作) {u'kind': u'calendar#events', u'default
我已经编写了代码来使用 BeautifulSoup 提取一本书的 url 和标题来自页面。 但它并没有在 > 之间提取惊人的 super 科学故事 1930 年 4 月这本书的名字。和 标签。 如何提
使用 Java,我想提取美元符号 $ 之间的单词。 例如: String = " this is first attribute $color$. this is the second attribu
您好,我正在尝试找到一种方法来确定字符串中的常量,然后提取该常量左侧的一定数量的字符。 例如-我有一个 .txt 文件,在那个文件的某处有数字 00nnn 数字的例子是 00234 00765 ...
php读取zip文件(删除文件,提取文件,增加文件)实例 从zip压缩文件中提取文件 复制代码 代码如下: <?php /* php 从zip压缩文件
我是一名优秀的程序员,十分优秀!