gpt4 book ai didi

python - 时间序列数据的运行平均值/频率?

转载 作者:塔克拉玛干 更新时间:2023-11-03 03:26:54 32 4
gpt4 key购买 nike

给定一个包含如下内容的数据集:

[2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 65, 75, 85, 86, 87, 88]

这些值总是在增加(实际上是时间),我想找出这些值之间的运行平均距离。我实际上是在尝试确定数据何时从“每秒 1 次”变为“每 5 秒 1 次”(或任何其他值)。

我正在用 Python 实现它,但欢迎使用任何语言的解决方案。

我正在寻找上面示例输入的输出类似于:

[(2, 1), (10, 5), (55, 10), (85, 1) ]

其中,“2”表示值之间的距离从哪里开始为“1”,并且,“10”表示距离变为“5”的位置。 (它必须恰好在那里,如果晚一步检测到偏移,那也没关系。)

我正在寻找值之间的平均距离何时发生变化。我意识到在算法的稳定性和对输入变化的敏感性之间会有某种权衡。

(顺便说一句,PandasNumPy 有用吗?)

最佳答案

您可以像这样使用 numpy 或 pandas(“pandas 版本”):

In [256]: s = pd.Series([2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35,
40, 45, 50, 55, 65, 75, 85, 86, 87, 88])

In [257]: df = pd.DataFrame({'time': s,
'time_diff': s.diff().shift(-1)}).set_index('time')

In [258]: df[df.time_diff - df.time_diff.shift(1) != 0].dropna()
Out[258]:
time_diff
time
2 1
10 5
55 10
85 1

如果您只想查看每个时间步长的第一次出现,您还可以使用:

In [259]: df.drop_duplicates().dropna() # set take_last=True if you want the last
Out[259]:
time_diff
time
2 1
10 5
55 10

但是对于 pandas,您通常会使用 DatetimeIndex 来使用内置的时间序列功能:

In [44]: a = [2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35,
40, 45, 50, 55, 65, 75, 85, 86, 87, 88]

In [45]: start_time = datetime.datetime.now()

In [46]: times = [start_time + datetime.timedelta(seconds=int(x)) for x in a]

In [47]: idx = pd.DatetimeIndex(times)

In [48]: df = pd.DataFrame({'data1': np.random.rand(idx.size),
'data2': np.random.rand(idx.size)},
index=idx)

In [49]: df.resample('5S') # resample to 5 Seconds
Out[49]:
data1 data2
2012-11-28 07:36:35 0.417282 0.477837
2012-11-28 07:36:40 0.536367 0.451494
2012-11-28 07:36:45 0.902018 0.457873
2012-11-28 07:36:50 0.452151 0.625526
2012-11-28 07:36:55 0.816028 0.170319
2012-11-28 07:37:00 0.169264 0.723092
2012-11-28 07:37:05 0.809279 0.794459
2012-11-28 07:37:10 0.652836 0.615056
2012-11-28 07:37:15 0.508318 0.147178
2012-11-28 07:37:20 0.261157 0.509014
2012-11-28 07:37:25 0.609685 0.324375
2012-11-28 07:37:30 NaN NaN
2012-11-28 07:37:35 0.736370 0.551477
2012-11-28 07:37:40 NaN NaN
2012-11-28 07:37:45 0.839960 0.118619
2012-11-28 07:37:50 NaN NaN
2012-11-28 07:37:55 0.697292 0.394946
2012-11-28 07:38:00 0.351824 0.420454

在我看来,在处理时间序列方面,Pandas 是迄今为止 Python 生态系统中可用的最佳库。不确定您真正想做什么,但我会尝试一下 pandas。

关于python - 时间序列数据的运行平均值/频率?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13580875/

32 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com