gpt4 book ai didi

python - 反向打印一个空间小于 O(n) 的不可变链表

转载 作者:塔克拉玛干 更新时间:2023-11-03 03:26:33 24 4
gpt4 key购买 nike

处理这个问题,我的想法是递归,在每次递归期间,反向打印链表的第二半,然后反向打印链表的第一半。所以额外的空间是 O(log n)——这是为递归堆栈提供额外的空间,但它的时间超过 O(n) (O(n log n) - 组合调用每个 (log n) 级递归迭代整个列表以将每个部分切成两半)。

是否有实现相同目标的算法 - 反向打印空间小于 O(n) 且时间最多为 O(n) 的不可变单链表?

源代码(Python 2.7):

class LinkedListNode:
def __init__(self, value, next_node):
self.value = value
self.next_node = next_node
@staticmethod
def reverse_print(list_head, list_tail):
if not list_head:
return
if not list_head.next_node:
print list_head.value
return
if list_head == list_tail:
print list_head.value
return
p0 = list_head
p1 = list_head
while p1.next_node != list_tail and p1.next_node.next_node != list_tail:
p1 = p1.next_node
p1 = p1.next_node
p0 = p0.next_node
LinkedListNode.reverse_print(p0.next_node, list_tail)
LinkedListNode.reverse_print(list_head, p0)
if __name__ == "__main__":
list_head = LinkedListNode(4, LinkedListNode(5, LinkedListNode(12, LinkedListNode(1, LinkedListNode(3, None)))))
LinkedListNode.reverse_print(list_head, None)

最佳答案

这是一个 O(n) 时间和 O(sqrt(n)) 空间算法。在帖子的第二部分,它将扩展到一个线性时间和 O(n^(1/t)) 空间的算法,用于任意正整数 t。

高级思想:将列表分成 sqrt(n) 个(几乎)大小相等的部分。使用朴素的线性时间、线性空间方法,从最后一个到第一个,以相反的顺序逐个打印零件。

为了存储零件的起始节点,我们需要一个大小为 O(sqrt(n)) 的数组。要恢复大小约为 sqrt(n) 的部分,朴素算法需要一个数组来存储对部分节点的引用。所以数组的大小为 O(sqrt(n)。


一个使用两个数组(lsassa),大小为 k=[sqrt(n)]+1 =O(sqrt(n))(lsa ...大步阵,ssa ..小步阵)

Phase 1: (if the size of the linked list is not known find out n, its length): move through the list from start to end and count the elements of the list, this needs n steps

Phase 2: Store each k-th node of the single linked list in the array lsa. This needs n steps.

Phase 3: Process the lsalist in reverse order. Print each part in reverse order This takes also n steps

因此该算法的运行时间为 3n = O(n),其速度约为 2*sqrt(n) = O(sqrt(n))。

这是一个 Python 3.5 实现:

import cProfile
import math

class LinkedListNode:
def __init__(self, value, next_node):
self.value = value
self._next_node = next_node

def next_node(self):
return(self._next_node)

def reverse_print(self):
# Phase 1
n=0
node=self
while node:
n+=1
node=node.next_node()
k=int(n**.5)+1

# Phase 2
i=0
node=self
lsa=[node]
while node:
i+=1
if i==k:
lsa.append(node)
i=0
last_node=node
node=node.next_node()
if i>0:
lsa.append(last_node)

# Phase 3
start_node=lsa.pop()
print(start_node.value)
while lsa:
last_printed_node=start_node
start_node=lsa.pop()
node=start_node
ssa=[]
while node!=last_printed_node:
ssa.append(node)
node=node.next_node()

ssa.reverse()
for node in ssa:
print(node.value)


@classmethod
def create_testlist(nodeclass, n):
''' creates a list of n elements with values 1,...,n'''
first_node=nodeclass(n,None)
for i in range(n-1,0,-1):
second_node=first_node
first_node=nodeclass(i,second_node)
return(first_node)

if __name__ == "__main__":
n=1000
cProfile.run('LinkedListNode.create_testlist(n).reverse_print()')
print('estimated number of calls of next_node',3*n)

它打印以下输出(最后是显示函数调用次数的分析器的输出):

>>> 
RESTART: print_reversed_list3.py
1000
999
998
...
4
3
2
1
101996 function calls in 2.939 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 2.939 2.939 <string>:1(<module>)
2000 0.018 0.000 2.929 0.001 PyShell.py:1335(write)
1 0.003 0.003 2.938 2.938 print_reversed_list3.py:12(reverse_print)
1 0.000 0.000 0.001 0.001 print_reversed_list3.py:49(create_testlist)
1000 0.000 0.000 0.000 0.000 print_reversed_list3.py:5(__init__)
2999 0.000 0.000 0.000 0.000 print_reversed_list3.py:9(next_node)
...

estimated number of calls of next_node 3000
>>>

调用 next_node() 的次数如预期的那样是 3000


可以使用这种 O(sqrt(m)) 空间算法,而不是使用简单的 O(m) 空间算法以相反的顺序打印长度为 m 的子列表。但是我们必须在子列表的数量和子列表的长度之间找到合适的平衡:

第 2 阶段:将简单链表拆分为 n^(1/3) 个长度为 n^(2/3) 的子列表。这些子列表的起始节点存储在一个长度为n^(1/3)的数组中

阶段 3:使用 O(sqrt(m)) 空间算法以相反的顺序打印每个长度为 m=n^(2/3) 的子列表。因为 m=n^(2/3) 我们需要 m^(1/2)=n^(1/3) 空间。

我们现在有一个 O(n^(1/3)) 空间算法,它需要 4n 时间,所以仍然是 O(n)

我们可以通过拆分为 n^(1/4) 个长度为 m=n^(3/4) 的子列表来再次重复此操作,这些子列表由 O(m^(1/3)) = O(n^ (1/4))空间算法,需要5n=O(n)时间。

我们可以一次又一次地重复这个并得出以下声明:

大小为 n 的不可变简单链表可以使用 t*n^(1/t)=O(n^(1/t)) 空间和 (t+1)n = O(n) 时间,其中 t 是任意正整数


如果不固定 t 而是根据 n 选择 t 使得 n^(1/t)) 大约为 2,这是最小的有用数组大小​​,那么这将导致 O(nlog(n)) 时间和 O( OP 描述的 log(n)) 空间算法。

如果选择 t=1,这将导致 O(n) 时间和 O(n) 空间朴素算法。


算法实现

import cProfile
import math
import time

class LinkedListNode:
'''
single linked list node
a node has a value and a successor node
'''
stat_counter=0
stat_curr_space=0
stat_max_space=0
stat_max_array_length=0
stat_algorithm=0
stat_array_length=0
stat_list_length=0
stat_start_time=0

do_print=True
def __init__(self, value, next_node):
self.value = value
self._next_node = next_node


def next_node(self):
self.stat_called_next_node()
return(self._next_node)

def print(self):
if type(self).do_print:
print(self.value)

def print_tail(self):
node=self
while node:
node.print()
node=node.next_node()

def tail_info(self):
list_length=0
node=self
while node:
list_length+=1
last_node=node
node=node.next_node()
return((last_node,list_length))


def retrieve_every_n_th_node(self,step_size,list_length):
''' for a list a of size list_length retrieve a pair there the first component
is an array with the nodes
[a[0],a[k],a[2*k],...,a[r*k],a[list_length-1]]]
and the second component is list_length-1-r*k
and
'''
node=self
arr=[]
s=step_size
index=0
while index<list_length:
if s==step_size:
arr.append(node)
s=1
else:
s+=1
last_node=node
node=node.next_node()
index+=1
if s!=1:
last_s=s-1
arr.append(last_node)
else:
last_s=step_size
return(arr,last_s)


def reverse_print(self,algorithm=0):
(last_node,list_length)=self.tail_info()
assert(type(algorithm)==int)
if algorithm==1:
array_length=list_length
elif algorithm==0:
array_length=2
elif algorithm>1:
array_length=math.ceil(list_length**(1/algorithm))
if array_length<2:
array_length=2
else:
assert(False)
assert(array_length>=2)
last_node.print()
self.stat_init(list_length=list_length,algorithm=algorithm,array_length=array_length)
self._reverse_print(list_length,array_length)
assert(LinkedListNode.stat_curr_space==0)
self.print_statistic()



def _reverse_print(self,list_length,array_length):
'''
this is the core procedure of the algorithm
if the list fits into the array
store it in te array an print the array in reverse order
else
split the list in 'array_length' sublists and store
the startnodes of the sublists in he array
_reverse_print array in reverse order
'''
if list_length==3 and array_length==2: # to avoid infinite loop
array_length=3
step_size=math.ceil(list_length/array_length)
if step_size>1: # list_length>array_length:
(supporting_nodes,last_step_size)=self.retrieve_every_n_th_node(step_size,list_length)
self.stat_created_array(supporting_nodes)
supporting_nodes.reverse()
supporting_nodes[1]._reverse_print(last_step_size+1,array_length)
for node in supporting_nodes[2:]:
node._reverse_print(step_size+1,array_length)
self.stat_removed_array(supporting_nodes)
else:
assert(step_size>0)
(adjacent_nodes,last_step_size)=self.retrieve_every_n_th_node(1,list_length)
self.stat_created_array(adjacent_nodes)
adjacent_nodes.reverse()
for node in adjacent_nodes[1:]:
node.print()
self.stat_removed_array(adjacent_nodes)

# statistics functions

def stat_init(self,list_length,algorithm,array_length):
'''
initializes the counters
and starts the stop watch
'''
type(self)._stat_init(list_length,algorithm,array_length)

@classmethod
def _stat_init(cls,list_length,algorithm,array_length):
cls.stat_curr_space=0
cls.stat_max_space=0
cls.stat_counter=0
cls.stat_max_array_length=0
cls.stat_array_length=array_length
cls.stat_algorithm=algorithm
cls.stat_list_length=list_length
cls.stat_start_time=time.time()

def print_title(self):
'''
prints the legend and the caption for the statistics values
'''
type(self).print_title()

@classmethod
def print_title(cls):
print(' {0:10s} {1:s}'.format('space','maximal number of array space for'))
print(' {0:10s} {1:s}'.format('', 'pointers to the list nodes, that'))
print(' {0:10s} {1:s}'.format('', 'is needed'))
print(' {0:10s} {1:s}'.format('time', 'number of times the method next_node,'))
print(' {0:10s} {1:s}'.format('', 'that retrievs the successor of a node,'))
print(' {0:10s} {1:s}'.format('', 'was called'))
print(' {0:10s} {1:s}'.format('alg', 'algorithm that was selected:'))
print(' {0:10s} {1:s}'.format('', '0: array size is 2'))
print(' {0:10s} {1:s}'.format('', '1: array size is n, naive algorithm'))
print(' {0:10s} {1:s}'.format('', 't>1: array size is n^(1/t)'))
print(' {0:10s} {1:s}'.format('arr', 'dimension of the arrays'))
print(' {0:10s} {1:s}'.format('sz', 'actual maximal dimension of the arrays'))
print(' {0:10s} {1:s}'.format('n', 'list length'))
print(' {0:10s} {1:s}'.format('log', 'the logarithm to base 2 of n'))
print(' {0:10s} {1:s}'.format('n log n', 'n times the logarithm to base 2 of n'))
print(' {0:10s} {1:s}'.format('seconds', 'the runtime of the program in seconds'))

print()
print('{0:>10s} {1:>10s} {2:>4s} {3:>10s} {4:>10s} {5:>10s} {6:>5s} {7:>10s} {8:>10s}'
.format('space','time','alg','arr','sz','n','log', 'n log n','seconds'))

@classmethod
def print_statistic(cls):
'''
stops the stop watch and prints the statistics for the gathered counters
'''
run_time=time.time()-cls.stat_start_time
print('{0:10d} {1:10d} {2:4d} {3:10d} {4:10d} {5:10d} {6:5d} {7:10d} {8:10.2f}'.format(
cls.stat_max_space,cls.stat_counter,cls.stat_algorithm,
cls.stat_array_length,cls.stat_max_array_length,cls.stat_list_length,
int(math.log2(cls.stat_list_length)),int(cls.stat_list_length*math.log2(cls.stat_list_length)),
run_time
))

def stat_called_next_node(self):
'''
counter: should be called
if the next node funtion is called
'''
type(self)._stat_called_next_node()

@classmethod
def _stat_called_next_node(cls):
cls.stat_counter+=1

def stat_created_array(self,array):
'''
counter: should be called
after an array was created and filled
'''
type(self)._stat_created_array(array)

@classmethod
def _stat_created_array(cls,array):
cls.stat_curr_space+=len(array)
if cls.stat_curr_space> cls.stat_max_space:
cls.stat_max_space=cls.stat_curr_space
if (len(array)>cls.stat_max_array_length):
cls.stat_max_array_length=len(array)

def stat_removed_array(self,array):
'''
counter: should be called
before an array can be removed
'''
type(self)._stat_removed_array(array)

@classmethod
def _stat_removed_array(cls,array):
cls.stat_curr_space-=len(array)

@classmethod
def create_testlist(nodeclass, n):
'''
creates a single linked list of
n elements with values 1,...,n
'''
first_node=nodeclass(n,None)
for i in range(n-1,0,-1):
second_node=first_node
first_node=nodeclass(i,second_node)
return(first_node)

if __name__ == "__main__":
#cProfile.run('LinkedListNode.create_testlist(n).reverse_print()')
n=100000
ll=LinkedListNode.create_testlist(n)
LinkedListNode.do_print=False
ll.print_title()
ll.reverse_print(1)
ll.reverse_print(2)
ll.reverse_print(3)
ll.reverse_print(4)
ll.reverse_print(5)
ll.reverse_print(6)
ll.reverse_print(7)
ll.reverse_print(0)

这是一些结果

   space      maximal number of array space for
pointers to the list nodes, that
is needed
time number of times the method next_node,
that retrievs the successor of a node,
was called
alg algorithm that was selected:
0: array size is 2
1: array size is n, naive algorithm
t>1: array size is n^(1/t)
arr dimension of the arrays
sz actual maximal dimension of the arrays
n list length
log the logarithm to base 2 of n
n log n n times the logarithm to base 2 of n
seconds the runtime of the program in seconds

space time alg arr sz n log n log n seconds
100000 100000 1 100000 100000 100000 16 1660964 0.17
635 200316 2 317 318 100000 16 1660964 0.30
143 302254 3 47 48 100000 16 1660964 0.44
75 546625 4 18 19 100000 16 1660964 0.99
56 515989 5 11 12 100000 16 1660964 0.78
47 752976 6 7 8 100000 16 1660964 1.33
45 747059 7 6 7 100000 16 1660964 1.23
54 1847062 0 2 3 100000 16 1660964 3.02

   space      maximal number of array space for
pointers to the list nodes, that
is needed
time number of times the method next_node,
that retrievs the successor of a node,
was called
alg algorithm that was selected:
0: array size is 2
1: array size is n, naive algorithm
t>1: array size is n^(1/t)
arr dimension of the arrays
sz actual maximal dimension of the arrays
n list length
log the logarithm to base 2 of n
n log n n times the logarithm to base 2 of n
seconds the runtime of the program in seconds

space time alg arr sz n log n log n seconds
1000000 1000000 1 1000000 1000000 1000000 19 19931568 1.73
2001 3499499 2 1000 1001 1000000 19 19931568 7.30
302 4514700 3 100 101 1000000 19 19931568 8.58
131 4033821 4 32 33 1000000 19 19931568 5.69
84 6452300 5 16 17 1000000 19 19931568 11.04
65 7623105 6 10 11 1000000 19 19931568 13.26
59 7295952 7 8 9 1000000 19 19931568 11.07
63 21776637 0 2 3 1000000 19 19931568 34.39

关于python - 反向打印一个空间小于 O(n) 的不可变链表,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41542257/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com