- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
给定以下数据集:
a | b | c | d
1 | 3 | 7 | 11
1 | 5 | 7 | 11
1 | 3 | 8 | 11
1 | 5 | 8 | 11
1 | 6 | 8 | 11
执行逆笛卡尔积得到:
a | b | c | d
1 | 3,5 | 7,8 | 11
1 | 6 | 8 | 11
我目前正在使用 scala,我的输入/输出数据类型目前是:
ListBuffer[Array[Array[Int]]]
我想出了一个解决方案(见下文),但感觉它可以优化。我对优化我的方法和全新的方法持开放态度。首选 scala 和 c# 解决方案。
我也很好奇这是否可以在 MS SQL 中完成。
我目前的解决方案:
def main(args: Array[String]): Unit = {
// Input
val data = ListBuffer(Array(Array(1), Array(3), Array(7), Array(11)),
Array(Array(1), Array(5), Array(7), Array(11)),
Array(Array(1), Array(3), Array(8), Array(11)),
Array(Array(1), Array(5), Array(8), Array(11)),
Array(Array(1), Array(6), Array(8), Array(11)))
reverseCartesianProduct(data)
}
def reverseCartesianProduct(input: ListBuffer[Array[Array[Int]]]): ListBuffer[Array[Array[Int]]] = {
val startIndex = input(0).size - 1
var results:ListBuffer[Array[Array[Int]]] = input
for (i <- startIndex to 0 by -1) {
results = groupForward(results, i, startIndex)
}
results
}
def groupForward(input: ListBuffer[Array[Array[Int]]], groupingIndex: Int, startIndex: Int): ListBuffer[Array[Array[Int]]] = {
if (startIndex < 0) {
val reduced = input.reduce((a, b) => {
mergeRows(a, b)
})
return ListBuffer(reduced)
}
val grouped = if (startIndex == groupingIndex) {
Map(0 -> input)
}
else {
groupOnIndex(input, startIndex)
}
val results = grouped.flatMap{
case (index, values: ListBuffer[Array[Array[Int]]]) =>
groupForward(values, groupingIndex, startIndex - 1)
}
results.to[ListBuffer]
}
def groupOnIndex(list: ListBuffer[Array[Array[Int]]], index: Int): Map[Int, ListBuffer[Array[Array[Int]]]] = {
var results = Map[Int, ListBuffer[Array[Array[Int]]]]()
list.foreach(a => {
val key = a(index).toList.hashCode()
if (!results.contains(key)) {
results += (key -> ListBuffer[Array[Array[Int]]]())
}
results(key) += a
})
results
}
def mergeRows(a: Array[Array[Int]], b: Array[Array[Int]]): Array[Array[Int]] = {
val zipped = a.zip(b)
val merged = zipped.map{ case (array1: Array[Int], array2: Array[Int]) =>
val m = array1 ++ array2
quickSort(m)
m.distinct
.array
}
merged
}
它的工作方式是:
如果其中的某些内容没有意义,我深表歉意,我的大脑今天无法正常工作。
最佳答案
这是我的看法。代码使用 Java,但可以轻松转换为 Scala 或 C#。
我对 n-1
的所有组合运行 groupingBy
并选择计数最少的那个,这意味着最大的合并深度,所以这是一种贪婪的方法。但是,不能保证您会找到最佳解决方案,这意味着最小化 k
的数量,这是 np-hard
要做的,请参阅链接 here寻求解释,但您会找到一个有效的解决方案,而且速度相当快。
完整示例在这里:https://github.com/jbilander/ReverseCartesianProduct/tree/master/src
Main.java
import java.util.*;
import java.util.stream.Collectors;
public class Main {
public static void main(String[] args) {
List<List<Integer>> data = List.of(List.of(1, 3, 7, 11), List.of(1, 5, 7, 11), List.of(1, 3, 8, 11), List.of(1, 5, 8, 11), List.of(1, 6, 8, 11));
boolean done = false;
int rowLength = data.get(0).size(); //4
List<Table> tables = new ArrayList<>();
// load data into table
for (List<Integer> integerList : data) {
Table table = new Table(rowLength);
tables.add(table);
for (int i = 0; i < integerList.size(); i++) {
table.getMap().get(i + 1).add(integerList.get(i));
}
}
// keep track of count, needed so we know when to stop iterating
int numberOfRecords = tables.size();
// start algorithm
while (!done) {
Collection<List<Table>> result = getMinimumGroupByResult(tables, rowLength);
if (result.size() < numberOfRecords) {
tables.clear();
for (List<Table> tableList : result) {
Table t = new Table(rowLength);
tables.add(t);
for (Table table : tableList) {
for (int i = 1; i <= rowLength; i++) {
t.getMap().get(i).addAll(table.getMap().get(i));
}
}
}
numberOfRecords = tables.size();
} else {
done = true;
}
}
tables.forEach(System.out::println);
}
private static Collection<List<Table>> getMinimumGroupByResult(List<Table> tables, int rowLength) {
Collection<List<Table>> result = null;
int min = Integer.MAX_VALUE;
for (List<Integer> keyCombination : getKeyCombinations(rowLength)) {
switch (rowLength) {
case 4: {
Map<Tuple3<TreeSet<Integer>, TreeSet<Integer>, TreeSet<Integer>>, List<Table>> map =
tables.stream().collect(Collectors.groupingBy(t -> new Tuple3<>(
t.getMap().get(keyCombination.get(0)),
t.getMap().get(keyCombination.get(1)),
t.getMap().get(keyCombination.get(2))
)));
if (map.size() < min) {
min = map.size();
result = map.values();
}
}
break;
case 5: {
//TODO: Handle n = 5
}
break;
case 6: {
//TODO: Handle n = 6
}
break;
}
}
return result;
}
private static List<List<Integer>> getKeyCombinations(int rowLength) {
switch (rowLength) {
case 4:
return List.of(List.of(1, 2, 3), List.of(1, 2, 4), List.of(2, 3, 4), List.of(1, 3, 4));
//TODO: handle n = 5, n = 6, etc...
}
return List.of(List.of());
}
}
tables.forEach(System.out::println)
的输出
Table{1=[1], 2=[3, 5, 6], 3=[8], 4=[11]}
Table{1=[1], 2=[3, 5], 3=[7], 4=[11]}
或为了可读性重写:
a | b | c | d
--|-------|---|---
1 | 3,5,6 | 8 | 11
1 | 3,5 | 7 | 11
如果您要在 sql (mysql) 中执行所有这些操作,您可能会使用 group_concat()
,我认为 MS SQL 在这里有类似的东西:simulating-group-concat或 STRING_AGG
如果是 SQL Server 2017,但我认为您必须使用在这种情况下有点讨厌的文本列:
例如
create table my_table (A varchar(50) not null, B varchar(50) not null,
C varchar(50) not null, D varchar(50) not null);
insert into my_table values ('1','3,5','4,15','11'), ('1','3,5','3,10','11');
select A, B, group_concat(C order by C) as C, D from my_table group by A, B, D;
将给出以下结果,因此您必须解析、排序和更新逗号分隔的结果,以使任何下一次合并迭代(分组依据)正确。
['1', '3,5', '3,10,4,15', '11']
关于sql - 逆笛卡尔积,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46084505/
我正在尝试构建不同(但每个同质)类型的可遍历项的多个交叉产品。所需的返回类型是元组的可遍历对象,其类型与输入可遍历对象中的类型相匹配。例如: List(1, 2, 3) cross Seq("a",
import java.util.Scanner; public class BooleanProduct { public static void main(String[] args) {
任务 - 数字的最大 K 积 时间限制:1 内存限制:64 M 给定一个整数序列 N(1 ≤ N ≤ 10 月,| A i | ≤ 2.10 9)和数量 K(1 ≤ K ≤ N)。找出乘积最大的 K
考虑一个大小为 48x16 的 float 矩阵 A 和一个大小为 1x48 的 float vector b。 请建议一种在常见桌面处理器 (i5/i7) 上尽可能快地计算 b×A 的方法。 背景。
假设我有一个 class Rectangle(object): def __init__(self, len
设 A 为 3x3 阶矩阵。判断矩阵A的 boolean 积可以组成多少个不同的矩阵。 这是我想出的: #include int main() { int matri
背景 生成随机权重列表后: sizes = [784,30,10] weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1],sizes[
我正在开发一个 python 项目并使用 numpy。我经常需要通过单位矩阵计算矩阵的克罗内克积。这些是我代码中的一个相当大的瓶颈,所以我想优化它们。我必须服用两种产品。第一个是: np.kron(n
有人可以提供一个例子说明如何使用 uBLAS 产品来乘法吗?或者,如果有更好的 C++ 矩阵库,您可以推荐我也欢迎。这正在变成一个令人头疼的问题。 这是我的代码: vector myVec(scala
我正在尝试开发一个Javascript程序,它会提示用户输入两个整数,然后显示这两个整数的和、乘积、差和商。现在它只显示总和。我实际上不知道乘法、减法和除法命令是否正在执行。这是 jsfiddle 的
如何使用 la4j 计算 vector (叉)积? vector 乘积为 接受两个 vector 并返回 vector 。 但是他们有scalar product , product of all e
在 C++ 中使用 Lapack 让我有点头疼。我发现为 fortran 定义的函数有点古怪,所以我尝试在 C++ 上创建一些函数,以便我更容易阅读正在发生的事情。 无论如何,我没有让矩阵 vecto
是否可以使用 Apple 的 Metal Performance Shaders 执行 Hadamard 产品?我看到可以使用 this 执行普通矩阵乘法,但我特别在寻找逐元素乘法,或者一种构造乘法的
我正在尝试使用 open mp 加速稀疏矩阵 vector 乘积,代码如下: void zAx(double * z, double * data, long * colind, long * row
有没有一种方法可以使用 cv::Mat OpenCV 中的数据结构? 我检查过 the documentation并且没有内置功能。但是我在尝试将标准矩阵乘法表达式 (*) 与 cv::Mat 类型的
我是一名优秀的程序员,十分优秀!