gpt4 book ai didi

c# - 跳点搜索比 XNA 中的常规 A* 慢的 A*?

转载 作者:塔克拉玛干 更新时间:2023-11-03 03:20:19 25 4
gpt4 key购买 nike

编辑:

为了帮助看这个问题的人成为回答者,我会注意到这个问题似乎是在跳转的对角线情况下。当递归运行时,该方法中的什么会导致速度变慢?

编辑结束。

在我开发的 XNA 游戏中,我使用 A* + JPS 算法在每一帧的统一方形网格上导航。我了解了 JPS herehere .但是,当我运行游戏时,帧率下降。帧率太低,以至于无法玩游戏。删除对跳跃点搜索“跳跃”的调用,并改为使用常规 A*,解决了足够大的正方形尺寸的问题。根据这篇文章,JPS 应该比常规 A* 更有效。速度变慢的原因似乎是在“对角线情况”中对 Jump 的两次调用(Jump 方法的第 15-29 行)。

很明显,我的实现一定有问题/效率低下。但它是什么?

代码:

Jump方法是JPS递归跳转功能的实现。

    public Vector2? Jump(Vector2 current, Vector2 direction, Vector2 start, Vector2 end)
{
// Position of new node we are going to consider:
Vector2 next = current + direction * SquareSize;

// If it's blocked we can't jump here
if (IsBlocked(next))
return null;

// If the node is the goal return it
if (next.X == end.X && next.Y == end.Y)
return next;

// Diagonal Case
if (direction.X != 0 && direction.Y != 0)
{
Vector2 horizontalBehind = current - new Vector2(direction.X * SquareSize, 0);
Vector2 verticalBehind = current - new Vector2(0, direction.Y * SquareSize);
if (IsBlocked(horizontalBehind) || IsBlocked(verticalBehind))
{
return current;
}
// Check in horizontal and vertical directions for forced neighbors
// This is a special case for diagonal direction
if (Jump(next, new Vector2(direction.X, 0), start, end) != null || Jump(next, new Vector2(0, direction.Y), start, end) != null)
{
return current;
}
}
else
{
// Horizontal case
if (direction.X != 0)
{
Vector2 topBehind = current - new Vector2(direction.X * SquareSize, SquareSize);
Vector2 above = current - new Vector2(0, SquareSize);
Vector2 bottomBehind = current + new Vector2(-direction.X * SquareSize, SquareSize);
Vector2 below = current + new Vector2(0, SquareSize);
if (IsBlocked(topBehind) || IsBlocked(above) || IsBlocked(bottomBehind) || IsBlocked(below))
{
return current;
}
}
else
{
Vector2 leftBehind = current - new Vector2(SquareSize, direction.Y * SquareSize);
Vector2 left = current - new Vector2(SquareSize, 0);
Vector2 rightBehind = current + new Vector2(-SquareSize, direction.Y * SquareSize);
Vector2 right = current - new Vector2(SquareSize, 0);
if (IsBlocked(leftBehind) || IsBlocked(left) || IsBlocked(rightBehind) || IsBlocked(right))
{
return current;
}
}
}
// If forced neighbor was not found try next jump point
return Jump(next, direction, start, end);
}

#endregion
}

Navigate是实现A*的方法,从'start'参数到'end'参数。

PriorityQueue 是基于this article 的通用实现.它的入队和出队方法具有 O(log2(n)) 复杂度。

    public Vector2? Navigate(Vector2 start, Vector2 end)
{
PriorityQueue<float, Vector2> openSet = new PriorityQueue<float, Vector2>();
List<Vector2> closedSet = new List<Vector2>(10);
Dictionary<Vector2, Vector2> cameFrom = new Dictionary<Vector2, Vector2>(10);
Dictionary<Vector2, float> gScores = new Dictionary<Vector2, float>(10);
gScores[start] = 0;
openSet.Enqueue(H(start, end), start);
while (openSet.Count != 0)
{
Vector2 current = openSet.Dequeue().Value;
if (WorldMap.InSquare(current) == WorldMap.InSquare(end))
return ReconstructPath(cameFrom, current, start);
List<Vector2> neighbours = WorldMap.GetNeighbours(current, start, end);
closedSet.Add(current);
foreach(Vector2 neighbour in neighbours)
{
if (closedSet.Contains(neighbour))
continue;
float tenativeGScore = gScores[current] + Vector2.Distance(current, neighbour);
if(!gScores.ContainsKey(neighbour) || gScores[neighbour] > tenativeGScore)//Discover a new node || Find a better path to a node
{
cameFrom[neighbour] = current;
gScores[neighbour] = tenativeGScore;
float fScore = tenativeGScore + H(neighbour, end);//Calculate F.
openSet.Enqueue(fScore, neighbour);
}
}
}
return null;
}

GetNeighbours 是一种返回节点“向量”的邻居的方法。A* 版本:

    public List<Vector2> GetNeighbours(Vector2 point, Vector2 start, Vector2 end)
{
Vector2[] directions = new Vector2[8];
List<Vector2> neighbours = new List<Vector2>(8);
directions[0] = Vector2.UnitX;//right
directions[1] = -Vector2.UnitX;//left
directions[2] = Vector2.UnitY;//down
directions[3] = -Vector2.UnitY;//up
directions[4] = Vector2.UnitX + Vector2.UnitY;//down right
directions[5] = -Vector2.UnitX + Vector2.UnitY;//down left
directions[6] = Vector2.UnitX - Vector2.UnitY;//up right
directions[7] = -Vector2.UnitX - Vector2.UnitY;//up left
foreach(Vector2 direction in directions)
{
Vector2 neighbour = point + direction * SquareSize;
if (!IsBlocked(neighbour))
neighbours.Add(neighbour);
}
return neighbours;
}

跳点搜索版本:

    public List<Vector2> GetNeighbours(Vector2 point, Vector2 start, Vector2 end)
{
Vector2[] directions = new Vector2[8];
List<Vector2> neighbours = new List<Vector2>(8);
directions[0] = Vector2.UnitX;//right
directions[1] = -Vector2.UnitX;//left
directions[2] = Vector2.UnitY;//down
directions[3] = -Vector2.UnitY;//up
directions[4] = Vector2.UnitX + Vector2.UnitY;//down right
directions[5] = -Vector2.UnitX + Vector2.UnitY;//down left
directions[6] = Vector2.UnitX - Vector2.UnitY;//up right
directions[7] = -Vector2.UnitX - Vector2.UnitY;//up left
foreach(Vector2 direction in directions)
{
//The only difference between this GetNeighbours and the other one
//is that this one calls Jump here.
Vector2? jp = Jump(point + direction * SquareSize, direction, start, end);
if (jp != null)
neighbours.Add((Vector2)jp);
}
return neighbours;
}

InSqaure 是一种返回表示 Vector2 所在正方形的 Vector2 的方法。它的复杂度为 O(1)。

IsBlocked 是一种方法,用于检查 Vector2 是否在 map 内部,以及它是否位于被阻挡的正方形中(“被阻挡”表示正方形中有障碍物)。它具有 O(log2(n)) 复杂度。

附加信息:

  • 我目前只在目标和起点之间没有障碍物的情况下检查这个。这意味着 JPS 算法仅扩展 1 个正方形。同时,常规 A* 扩展 8 以找到从 (100, 100) 到 (0, 0) 的路径,但在找到 (100, 100) 到 (-800, -580) 之间的距离时扩展 2325 个方 block 。在后一种情况下,帧率明显下降,导致游戏几乎无法玩。
  • 帧速率已解锁。
  • 在小于大约 1200 个方格的网格中没有明显的卡顿现象,游戏的帧速率略有下降,最高可达 1600 左右。

如果需要更多信息,我会很乐意提供,

提前致谢!

最佳答案

在我的游戏中,我使用 A* 进行立体寻路。这需要更多的处理时间,但实现的构建方式几乎不可见。

        public void FixedUpdate()
{
if (calculating && openSet.Count > 0 && calculatingStep < 240)
PathfindingStep(navDestination, navAccurancyFactor);
else calculating = false;//...
}

FixedUpdate 每秒调用 50 次。

       private void PathfindingBegin(Vector3 destination)
{
navAccurancyFactor = (1 + (Vector3.Distance(walkerTransform.position, destination) / (accurancy * 5)));
navDestination = destination;
calculatingStep = 0;
calculating = true;
closedSet = new List<PathNode>();
openSet = new List<PathNode>();
Vector3 startPos;
if (path.Count > 0)
startPos = path.Last();
else
startPos = walkerTransform.position;
// Шаг 2.
PathNode startNode = new PathNode()
{
Position = startPos,
CameFrom = null,
PathLengthFromStart = 0,
HeuristicEstimatePathLength = GetHeuristicPathLength(walkerTransform.position, destination)
};
openSet.Add(startNode);
}

调用 PathfindingBegin 开始,接下来每帧调用 PathfindingStep onse 来构建路径。

        private void PathfindingStep(Vector3 destination, float accuracyFactor)
{
calculatingStep++;
PathNode currentNode;
// Шаг 3.
currentNode = openSet.OrderBy(node => node.EstimateFullPathLength).First();
// Шаг 4.
if (Vector3.Distance(currentNode.Position, destination) <= accurancy * accuracyFactor)
{
PathfindingComplete(CollapsePath(GetPathForNode(currentNode)).ToArray());
return;
}
// Шаг 5.
openSet.Remove(currentNode);
closedSet.Add(currentNode);
// Шаг 6.
List<PathNode> neighbours = GetNeighbours(currentNode, destination, accuracyFactor);
foreach (PathNode neighbourNode in neighbours)
{
// Шаг 7.
if (closedSet.Count(node => node.Position == neighbourNode.Position) > 0)
continue;
PathNode openNode = openSet.Find(node => node.Position == neighbourNode.Position);
// Шаг 8.
if (openNode == null)
openSet.Add(neighbourNode);
else if (openNode.PathLengthFromStart > neighbourNode.PathLengthFromStart)
{
// Шаг 9.
openNode.CameFrom = currentNode;
openNode.PathLengthFromStart = neighbourNode.PathLengthFromStart;
}
}
}

最后调用 PathfindingComplete 应用路径。或者如果目的地不可用。

        private void PathfindingComplete(Vector3[] pathPoints)
{
if (pathPoints != null)
{
status = DriverStatus.Navigating;
foreach (Vector3 x in pathPoints)
{
//Debug.Log(x);
path.Enqueue(x);
}
BuildPathArrows();
}
calculating = false;
}

附言我们可以在 https://github.com/DaniilChikish/SpaceComander 找到所有项目

关于c# - 跳点搜索比 XNA 中的常规 A* 慢的 A*?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37949315/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com