- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
众所周知,Pascal 恒等式可用于将 n 中的 k 元素组合编码为从 0 到 (n\choose k) - 1
(我们称这个数字为组合索引)使用combinatorial number system .假设算术运算的时间恒定,则此算法需要 O(n) 时间。†
我有一个应用程序,其中 k ≪ n 并且 O(n) 时间内的算法是不可行的。是否有一种算法可以将 0 和 (n\choose k) - 1
之间的数字双射分配给 n 中的 k 个元素的组合谁的运行时间是 O(k) 或类似的?该算法不需要计算与组合数系统相同的映射,但是,需要以相似的时间复杂度计算逆。
† 更具体地说,根据组合索引计算组合的算法运行时间为 O(n)。如果您预先计算二项式系数,则可以在 O(k) 时间内从组合中计算出组合指数。
最佳答案
评论的描述。
对于给定的组合索引 ( N
),找到 k'th
需要找到的数字 c_k
这样 (c_k \choose k) <= N
和 ((c_k+1) \choose k) > N
.
设置P(i,k) = i!/(i-k)!
.
P(i, k) = i * (i-1) * ... * (i-k+1)
substitute x = i - (k-1)/2
= (x+(k-1)/2) * (x+(k-1)/2-1) * ... * (x-(k-1)/2+1) * (x-(k-1)/2)
= (x^2 - ((k-1)/2)^2) * (x^2 - ((k-1)/2-1)^2) * ...
= x^k - sum(((k-2i-1)/2)^2))*x^(k-2) + O(x^(k-4))
= x^k - O(x^(k-2))
P(i, k) = (i - (k-1)/2)^k - O(i^(k-2))
从上面的不等式:
(c_k \choose k) <= N
P(c_k, k) <= N * k!
c_k ~= (N * k!)^(1/k) + (k-1)/2
我不确定 O(c_k^(k-2)) 部分有多大。估计影响不大。如果是订单(c_k+1)/(c_k-k+1)
比近似值非常好。这是由于:
((c_k+1) \choose k) = (c_k \choose k) * (c_k + 1) / (c_k - k + 1)
我会尝试这样的算法:
For given k
Precalculate k!
For given N
For i in (k, ..., 0)
Calculate c_i with (N * i!)^(1/i) + (i-1)/2
(*) Check is P(c_i, k) <=> N * i!
If smaller check c_i+1
If larger check c_i-1
Repeat (*) until found P(c_i, i) <= N * i! < P(c_i+1, i)
N = N - P(c_i, i)
如果近似值很好,number of steps << k
, 而不是找到一个数字是 O(k)。
关于algorithm - 有没有更好的算法来为组合分配数字?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40888988/
滑动窗口限流 滑动窗口限流是一种常用的限流算法,通过维护一个固定大小的窗口,在单位时间内允许通过的请求次数不超过设定的阈值。具体来说,滑动窗口限流算法通常包括以下几个步骤: 初始化:设置窗口
表达式求值:一个只有+,-,*,/的表达式,没有括号 一种神奇的做法:使用数组存储数字和运算符,先把优先级别高的乘法和除法计算出来,再计算加法和减法 int GetVal(string s){
【算法】前缀和 题目 先来看一道题目:(前缀和模板题) 已知一个数组A[],现在想要求出其中一些数字的和。 输入格式: 先是整数N,M,表示一共有N个数字,有M组询问 接下来有N个数,表示A[1]..
1.前序遍历 根-左-右的顺序遍历,可以使用递归 void preOrder(Node *u){ if(u==NULL)return; printf("%d ",u->val);
先看题目 物品不能分隔,必须全部取走或者留下,因此称为01背包 (只有不取和取两种状态) 看第一个样例 我们需要把4个物品装入一个容量为10的背包 我们可以简化问题,从小到大入手分析 weightva
我最近在一次采访中遇到了这个问题: 给出以下矩阵: [[ R R R R R R], [ R B B B R R], [ B R R R B B], [ R B R R R R]] 找出是否有任
我正在尝试通过 C++ 算法从我的 outlook 帐户发送一封电子邮件,该帐户已经打开并记录,但真的不知道从哪里开始(对于 outlook-c++ 集成),谷歌也没有帮我这么多。任何提示将不胜感激。
我发现自己像这样编写了一个手工制作的 while 循环: std::list foo; // In my case, map, but list is simpler auto currentPoin
我有用于检测正方形的 opencv 代码。现在我想在检测正方形后,代码运行另一个命令。 代码如下: #include "cv.h" #include "cxcore.h" #include "high
我正在尝试模拟一个 matlab 函数“imfill”来填充二进制图像(1 和 0 的二维矩阵)。 我想在矩阵中指定一个起点,并像 imfill 的 4 连接版本那样进行洪水填充。 这是否已经存在于
我正在阅读 Robert Sedgewick 的《C++ 算法》。 Basic recurrences section it was mentioned as 这种循环出现在循环输入以消除一个项目的递
我正在思考如何在我的日历中生成代表任务的数据结构(仅供我个人使用)。我有来自 DBMS 的按日期排序的任务记录,如下所示: 买牛奶(18.1.2013) 任务日期 (2013-01-15) 任务标签(
输入一个未排序的整数数组A[1..n]只有 O(d) :(d int) 计算每个元素在单次迭代中出现在列表中的次数。 map 是balanced Binary Search Tree基于确保 O(nl
我遇到了一个问题,但我仍然不知道如何解决。我想出了如何用蛮力的方式来做到这一点,但是当有成千上万的元素时它就不起作用了。 Problem: Say you are given the followin
我有一个列表列表。 L1= [[...][...][.......].......]如果我在展平列表后获取所有元素并从中提取唯一值,那么我会得到一个列表 L2。我有另一个列表 L3,它是 L2 的某个
我们得到二维矩阵数组(假设长度为 i 和宽度为 j)和整数 k我们必须找到包含这个或更大总和的最小矩形的大小F.e k=7 4 1 1 1 1 1 4 4 Anwser是2,因为4+4=8 >= 7,
我实行 3 类倒制,每周换类。顺序为早类 (m)、晚类 (n) 和下午类 (a)。我固定的订单,即它永远不会改变,即使那个星期不工作也是如此。 我创建了一个函数来获取 ISO 周数。当我给它一个日期时
假设我们有一个输入,它是一个元素列表: {a, b, c, d, e, f} 还有不同的集合,可能包含这些元素的任意组合,也可能包含不在输入列表中的其他元素: A:{e,f} B:{d,f,a} C:
我有一个子集算法,可以找到给定集合的所有子集。原始集合的问题在于它是一个不断增长的集合,如果向其中添加元素,我需要再次重新计算它的子集。 有没有一种方法可以优化子集算法,该算法可以从最后一个计算点重新
我有一个包含 100 万个符号及其预期频率的表格。 我想通过为每个符号分配一个唯一(且前缀唯一)的可变长度位串来压缩这些符号的序列,然后将它们连接在一起以表示序列。 我想分配这些位串,以使编码序列的预
我是一名优秀的程序员,十分优秀!