gpt4 book ai didi

python - python中的Clauset-Newman-Moore社区检测算法

转载 作者:塔克拉玛干 更新时间:2023-11-03 03:17:57 24 4
gpt4 key购买 nike

仅供引用:这不是家庭作业

我尝试在 Python 中实现 Clauset-Newman-Moore 社区检测算法,当它运行时,它输出的模块化 (Q) 值始终因某些因素而偏离。完整的代码如下 - 它接受格式为 this 的文本文件.

虽然我不希望任何人提供修复所有代码的完整解决方案,但非常感谢任何可能出错的提示!!

一些可能很重要的注意事项:

  • heapq 模块中的 python 堆是一个最小堆,我需要一个用于该算法的最大堆,因此 Q 的值存储为 -Q。
  • 出于同样的原因,交换对 Q 值的算术运算(减法而不是加法等)

#!/usr/bin/env python

'''
Usage:
python cnm.py <input_file> <output_file>
'''

import heapq
import sys
import time
from pprint import pprint

def read_input(filename):
''' Loads the input into a dictionary'''

output_dict = {}
with open(filename, 'r') as f:
for line in f:
l = line.split('\t')
key = int(l[0].strip())
value = int(l[1].strip())

if key not in output_dict:
output_dict[key] = []
if value not in output_dict:
output_dict[value] = []

if value in output_dict[key]:
pass
else:
output_dict[key].append(value)

if key in output_dict[value]:
pass
else:
output_dict[value].append(key)

return output_dict


def calculate_m(input_dict):
''' Gives the total number of edges in the network. '''
total = 0
for key in input_dict:
total += len(input_dict[key])
return total / 2


def calculate_deltaQ(m, ki, kj):
''' Calculates deltaQ for two communities i and j '''
deltaQ = 1.0/(2.0*m) - float(ki*kj) / ((2*m)**2)
return deltaQ


def populate_Qtrees(input_dict, m):
Qtrees = {}
for i in input_dict:
community = input_dict[i]
ki = len(community)
Qtrees[i] = {}
for j in community:
kj = len(input_dict[j])
Qtrees[i][j] = calculate_deltaQ(m, ki, kj)

return Qtrees


def populate_Qheaps(input_dict, m):
Qheaps = {}
for key in input_dict:
community = input_dict[key]
ki = len(community)
Qheaps[key] = []
for i in community:
kj = len(input_dict[i])
deltaQ = calculate_deltaQ(m, ki, kj)
# we store the items in the heap as their negative values because
# python heap is a min-heap
heapq.heappush(Qheaps[key], (-deltaQ, i, key))
return Qheaps


def populate_H(Qheaps):
H = []
for key in Qheaps:
if Qheaps[key] == []:
continue
else:
maximum = Qheaps[key][0]
heapq.heappush(H, maximum)
return H


def populate_a(input_dict, m):
a = {}
for key in input_dict:
k = len(input_dict[key])
ai = float(k) / (2.0 * m)
a[key] = ai
return a


def select_largest_q(H):
return heapq.heappop(H)


def update_Qtrees(Qtrees, a, i, j):

# from equation 10a - summing i into j
for key in Qtrees[i]:
if key in Qtrees[j]:
Qtrees[j][key] = Qtrees[i][key] - Qtrees[j][key]

# from equations 10b and 10c - update row j
for key in Qtrees:
if key in Qtrees[i] and key not in Qtrees[j]:
Qtrees[j][key] = Qtrees[i][key] + (2 * a[j] * a[key])
elif key in Qtrees[j] and key not in Qtrees[i]:
Qtrees[j][key] = Qtrees[j][key] + (2 * a[i] * a[key])

# remove i key and update j for each row k
for key in Qtrees:
if i in Qtrees[key]:
Qtrees[key].pop(i, None)
if j in Qtrees[key]:
Qtrees[key][j] = Qtrees[key][j] + (2 * a[i] * a[key])

# remove the self-reference (necessary because our tree is a python dict)
if j in Qtrees[j]:
Qtrees[j].pop(j, None)

# remove i
Qtrees.pop(i, None)

return Qtrees


def update_Qheaps(Qtrees, Qheaps, i, j):

# remove the heap i
Qheaps.pop(i, None)

# rebuild the jth heap from the jth binary tree in Qtree
community = Qtrees[j]
h = [ (community[key], key, j) for key in community ] # list comprehension
heapq.heapify(h)
Qheaps[j] = h

# remove the ith and update the jth element in each heap
for key in Qheaps:
heap = Qheaps[key]
for item in heap[:]:
if item[1] == i:
heap.remove(item)
heapq.heapify(heap)
elif item[1] == j:
# we temporarily change the item to a list to perform insertion
# (tuples are immutable)
item_copy = list(item)
heap.remove(item)
item_copy[0] = Qtrees[key][j]
heapq.heappush(heap, tuple(item_copy))

return Qheaps


def update_a(a, i, j):
a[j] += a[i]
a[i] = 0
return a


def main():
''' Main loop of the program. '''

# read command line input
filename = sys.argv[1]
maxQ = 0
max_step = 0
Q = 0

input_dict = read_input(filename)
m = calculate_m(input_dict)
nodes = len(input_dict)

Qtrees = populate_Qtrees(input_dict, m)
Qheaps = populate_Qheaps(input_dict, m)
H = populate_H(Qheaps)
a = populate_a(input_dict, m)

step = 0
print 'i', '\t', 'j', '\t', 'Q', '\t\t', 'deltaQ', '\t\t', 'step'

while H:
deltaQ, i, j = select_largest_q(H)
Q -= deltaQ

Qtrees = update_Qtrees(Qtrees, a, i, j)
Qheaps = update_Qheaps(Qtrees, Qheaps, i, j)
H = populate_H(Qheaps)
a = update_a(a, i, j)

step += 1

print i, '\t', j, '\t', round(Q, 7), '\t', round(deltaQ, 7), '\t', step

if deltaQ < 0:
maxQ = deltaQ
max_step = step
else:
pass

output_file = sys.argv[2]
with open(output_file, 'w+') as f:
f.write(
'''FASTCOMMUNITY_INFERENCE_ALGORITHM in python!
START-----: {0}
---NET_STATS----
NUMNODES--: {1}
NUMEDGES--: {2}
---MODULARITY---
MAXQ------: {3}
STEP------: {4}
EXIT------: {5}'''.format(time.asctime(),
nodes,
m,
maxQ,
max_step,
time.asctime() ))


if __name__ == '__main__':
main()

最佳答案

让我担心的一件事是:

heap.remove(item)
item_copy[0] = Qtrees[key][j]
heapq.heappush(heap, tuple(item_copy))

heap.remove(item) 将从称为堆的列表中删除项目 - 并销毁堆不变量。

换句话说,在这一步之后,你的名为 heap 的变量可能不再是一个堆。

也许打电话会有所帮助

heapq.heapify(heap)

在 heap.remove(item) 之后。

关于python - python中的Clauset-Newman-Moore社区检测算法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24618156/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com