gpt4 book ai didi

嵌套 While 循环的算法复杂度

转载 作者:塔克拉玛干 更新时间:2023-11-03 03:17:23 25 4
gpt4 key购买 nike

所以我在这个问题上遇到了一些麻烦,因为变量 i。我只是不确定在第二个 while 循环中如何处理它。对于我的外循环,我知道它将运行 log_4(n^2) 次迭代。对于内部 while 循环,我计算的迭代次数为 (2n^3 - 3)/i。我只是在努力研究如何将这两者放在一起以获得该功能的总体复杂性。非常感谢任何输入!

function p(n)
i = 1;
while i < n^2 do
j = 3;
while j < 2n^3 do
j = j + i;
end
i = 4i;
end

最佳答案

我不擅长数学,但我正在尝试回答这个问题。

首先让我们从第一次迭代开始计算:

  • i=1:j增加了大约2n^3倍(分析复杂度时可以忽略常量)
  • i=4: j增加了大约2n^3/4倍
  • i=16:j增加了大约2n^3/16倍。
  • ...
  • i=n^2:j增加了大约2n^3/(n^2)倍。

总共j增加了:(2n^3)+(2n^3)/4+(2n^3)/16+(2n^3)/64+...+(2n^3)/(n^2) 次。即:

2n^3*(1+1/4+1/16+1/64+1/256+...+1/(n^2))
= 2n^3((1-(1/4)^(log_4(n^2)))/(1-(1/4))) // sum of geometric progression
= 2n^3 * (1-1/n^2) * 4/3

所以它是 O(n^3)。

关于嵌套 While 循环的算法复杂度,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33207379/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com