- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我正在寻找一个算法,以排序到一个树结构无序的项目列表,使用最小数量的“是子”比较操作尽可能。
对我的具体案例有一点了解,但我想我只是在寻找一种我找不到的通用排序算法(这是一个很难完善的搜索词)。
我有一个无序的轮廓列表,这只是描述闭合多边形的坐标列表。我想创建一个表示这些等高线之间关系的树,这样最外层就是根,每个等高线都是下一级的子等高线,以此类推所以一个树结构,每个节点有零到多个子节点。
该算法的一个关键要求是将用于确定某个轮廓是否是另一个轮廓的子轮廓的测试保持在最小值,因为该操作非常昂贵。等高线可以(而且通常会)共享许多顶点,但不应相交。这些共享顶点通常出现在达到地图限制的地方-在地图的直边上画一组同心的半圆形。如果我需要在得到一个确定的答案之前通过大量的点对线测试,那么poly测试中的点是缓慢的。
这是我到目前为止提出的算法。毫无疑问,这是相当幼稚的,但确实有效。可能有一些启发式方法可能会有帮助-例如,一个轮廓只可能是另一个深度在一定范围内的轮廓的子轮廓-但我想首先确定基本算法。第一个红旗是它是指数型的。
for each candidate_contour in all_contours
for each contour in all_contours
// note already contains means "is direct or indirect child of"
if contour == candidate_contour or contour already contains(candidate_contour)
continue
else
list contours_to_check
contours_to_check.add(candidate_contour)
contour parent_contour = candidate_contour.parent
while (parent_contour != null)
contours_to_check.add(parent_contour)
parent_contour = parent_contour.parent
for each possible_move_candidate in contours_to_check (REVERSE ITERATION)
if possible_move_candidate is within contour
// moving a contour moves the contour and all of its children
move possible_move_candidate to direct child of contour
break
public static iso_area sort_iso_areas(List<iso_area> areas, iso_area root)
{
if (areas.Count == 0)
return null;
areas.Sort(new iso_comparer_descending());
foreach (iso_area area in areas)
{
if (root.children.Count == 0)
root.children.Add(area);
else
{
bool found_child = false;
foreach (iso_area child in root.children)
{
// check if this iso_area is within the child
// if it is, follow the children down to find the insertion position
if (child.try_add_child(area))
{
found_child = true;
break;
}
}
if (!found_child)
root.children.Add(area);
}
}
return root;
}
// try and add the provided child to this area
// if it fits, try adding to a subsequent child
// keep trying until failure - then add to the previous child in which it fitted
bool try_add_child(iso_area area)
{
if (within(area))
{
// do a recursive search through all children
foreach (iso_area child in children)
{
if (child.try_add_child(area))
return true;
}
area.move_to(this);
return true;
}
else
return false;
}
public static iso_area sort_iso_areas(List<iso_area> areas)
{
if (areas.Count == 0)
return null;
areas.Sort(new iso_comparer_descending());
for (int i = 0; i < areas.Count; ++i)
{
for (int j = i - 1; j >= 0; --j)
{
if (areas[j].try_add_child(areas[i]))
break;
}
}
return areas[0];
}
最佳答案
我以前也做过类似的事情,先是按区域排序。
如果多边形B包含在多边形A中,则多边形A的边界框必须大于多边形B的边界框。如果将边界框指定为((x1, y1), (x2, y2))
,则:
A.x1 < B.x1
A.y1 < B.y1
A.x2 > B.x2
A.y2 > B.y2
<=
和
>=
。)
PolygonNode
{
Polygon poly
PolygonNode[] Children
}
PolygonNode
结构的初始空列表对多边形进行排序:
Polygon[] sortedPolygons
PolygonNode[] theTree
sortedPolygons
的第一个成员开始,检查它是否是
theTree
的任何顶级成员的子成员。如果不是,则将多边形添加到
theTree
。边界框在这里有帮助,因为如果边界框测试失败,则不必执行“多边形中的完整多边形”测试。
sortedPolygons
中的每个多边形重复该操作。
theTree
列表和子节点列表排序来稍微加快速度。然后可以使用二进制搜索更快地找到多边形的潜在父对象。这样做会使事情稍微复杂一些,但是如果有很多顶级多边形,那么这可能是值得的。不过,我不会在第一次切割时添加这种优化。很有可能,我概述的使用顺序搜索的版本将足够快。
p[i]
是
p[i-1]
的子实例,
p[i-2]
是
iso_area last_area = null; // <============
foreach (iso_area area in areas)
{
if (root.children.Count == 0)
root.children.Add(area);
else if (!last_area.try_add_child(area)) // <=======
{
bool found_child = false;
foreach (iso_area child in root.children)
{
// check if this iso_area is within the child
// if it is, follow the children down to find the insertion position
if (child.try_add_child(area))
{
found_child = true;
break;
}
}
if (!found_child)
root.children.Add(area);
}
last_area = area; // <============
}
return root;
关于algorithm - 将无序列表排序到树结构的算法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/19844093/
我在一本书(Interview Question)中读到这个问题,想在这里详细讨论这个问题。请点亮它。 问题如下:- 隐私和匿名化 马萨诸塞州集团保险委员会早在 1990 年代中期就有一个绝妙的主意
我最近接受了一次面试,面试官给了我一些伪代码并提出了相关问题。不幸的是,由于准备不足,我无法回答他的问题。由于时间关系,我无法向他请教该问题的解决方案。如果有人可以指导我并帮助我理解问题,以便我可以改
这是我的代码 public int getDist(Node root, int value) { if (root == null && value !=0) return
就效率而言,Strassen 算法应该停止递归并应用乘法的最佳交叉点是多少? 我知道这与具体的实现和硬件密切相关,但对于一般情况应该有某种指南或某人的一些实验结果。 在网上搜索了一下,问了一些他们认为
我想学习一些关于分布式算法的知识,所以我正在寻找任何书籍推荐。我对理论书籍更感兴趣,因为实现只是个人喜好问题(我可能会使用 erlang(或 c#))。但另一方面,我不想对算法进行原始的数学分析。只是
我想知道你们中有多少人实现了计算机科学的“ classical algorithms ”,例如 Dijkstra's algorithm或现实世界中的数据结构(例如二叉搜索树),而不是学术项目? 当有
我正在解决旧编程竞赛中的一些示例问题。在这个问题中,我们得到了我们有多少调酒师以及他们知道哪些食谱的信息。制作每杯鸡尾酒需要 1 分钟,我们需要使用所有调酒师计算是否可以在 5 分钟内完成订单。 解决
关闭。这个问题是opinion-based .它目前不接受答案。 想要改进这个问题? 更新问题,以便 editing this post 可以用事实和引用来回答它. 关闭 8 年前。 Improve
我开始学习 Nodejs,但我被困在中间的某个地方。我从 npm 安装了一个新库,它是 express -jwt ,它在运行后显示某种错误。附上代码和错误日志,请帮助我! const jwt = re
我有一个证书,其中签名算法显示“sha256rsa”,但指纹算法显示“sha1”。我的证书 SHA1/SHA2 的标识是什么? 谢谢! 最佳答案 TL;TR:签名和指纹是完全不同的东西。对于证书的强度
我目前在我的大学学习数据结构类(class),并且在之前的类(class)中做过一些算法分析,但这是我在之前的类(class)中遇到的最困难的部分。我们现在将在我的数据结构类(class)中学习算法分
有一个由 N 个 1x1 方格组成的区域,并且该区域的所有部分都是相连的(没有任何方格无法到达的方格)。 下面是一些面积的例子。 我想在这个区域中选择一些方块,并且两个相邻的方块不能一起选择(对角接触
我有一些多边形形状的点列表,我想将其包含在我页面上的 Google map 中。 我已经从原始数据中删除了尽可能多的不必要的多边形,现在我剩下大约 12 个,但它们非常详细以至于导致了问题。现在我的文
我目前正在实现 Marching Squares用于计算等高线曲线,我对此处提到的位移位的使用有疑问 Compose the 4 bits at the corners of the cell to
我正在尝试针对给定算法的约束满足问题实现此递归回溯函数: function BACKTRACKING-SEARCH(csp) returns solution/failure return R
是否有包含反函数的库? 作为项目的一部分,我目前正在研究测向算法。我正在使用巴特利特相关性。在 Bartlett 相关性中,我需要将已经是 3 次矩阵乘法(包括 Hermitian 转置)的分子除以作
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 这个问题似乎与 help center 中定义的范围内的编程无关。 . 关闭 8 年前。 Improve
问题的链接是UVA - 1394 : And There Was One . 朴素的算法是扫描整个数组并在每次迭代中标记第 k 个元素并在最后停止:这需要 O(n^2) 时间。 我搜索了一种替代算法并
COM 中创建 GUID 的函数 (CoCreateGUID) 使用“分散唯一性算法”,但我的问题是,它是什么? 谁能解释一下? 最佳答案 一种生成 ID 的方法,该 ID 具有一定的唯一性保证,而不
在做一个项目时我遇到了这个问题,我将在这个问题的实际领域之外重新措辞(我想我可以谈论烟花的口径和形状,但这会使理解更加复杂).我正在寻找一种(可能是近似的)算法来解决它。 我有 n 个不同大小的容器,
我是一名优秀的程序员,十分优秀!