- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
x = pd.DataFrame.from_dict(OFFERS)
print(x)
offer_price product_id ventor
0 5.0 1 A
1 6.0 1 B
2 7.0 1 C
3 8.0 1 D
4 9.0 1 E
5 5.1 2 A
6 6.1 2 B
7 7.1 2 C
8 8.1 2 D
9 9.1 2 E
10 5.2 3 A
11 6.2 3 B
12 7.2 3 C
13 8.2 3 D
14 9.2 3 E
15 77.2 3 F
16 66.2 3 G
I get a list with JSON format from server
OFFERS = [
{'offer_id': 100, 'product_id': 1, 'vendor':'A', 'offer_price':5.00},
{'offer_id': 101, 'product_id': 1, 'vendor':'B', 'offer_price':6.00},
{'offer_id': 102, 'product_id': 1, 'vendor':'C', 'offer_price':7.00},
{'offer_id': 103, 'product_id': 1, 'vendor':'D', 'offer_price':8.00},
{'offer_id': 104, 'product_id': 1, 'vendor':'E', 'offer_price':9.00},
{'offer_id': 105, 'product_id': 2, 'vendor':'A', 'offer_price':5.10},
{'offer_id': 106, 'product_id': 2, 'vendor':'B', 'offer_price':6.10},
{'offer_id': 107, 'product_id': 2, 'vendor':'C', 'offer_price':7.10},
{'offer_id': 108, 'product_id': 2, 'vendor':'D', 'offer_price':8.10},
{'offer_id': 109, 'product_id': 2, 'vendor':'E', 'offer_price':9.10},
{'offer_id': 110, 'product_id': 3, 'vendor':'A', 'offer_price':5.20},
{'offer_id': 111, 'product_id': 3, 'vendor':'B', 'offer_price':6.20},
{'offer_id': 112, 'product_id': 3, 'vendor':'C', 'offer_price':7.20},
{'offer_id': 113, 'product_id': 3, 'vendor':'D', 'offer_price':8.20},
{'offer_id': 114, 'product_id': 3, 'vendor':'E', 'offer_price':9.20}
]
How I get the best combination of offers that gonna limit the vendors(shipping) and I get best possible price
My code so far is with python 3.6
=========================== TRY No1 ============================
After 3 hours of digging I come with this but I think this algorithm is very slow
My data have this format:
OFFERS = [
{'offer_id':'oid_1','product_id': 'pid_1', 'vendor':'B', 'offer_price':5.00},
{'offer_id':'oid_1','product_id': 'pid_1', 'vendor':'B', 'offer_price':6.00},
{'offer_id':'oid_2','product_id': 'pid_1', 'vendor':'C', 'offer_price':7.00},
{'offer_id':'oid_3','product_id': 'pid_1', 'vendor':'D', 'offer_price':2.00},
{'offer_id':'oid_4','product_id': 'pid_1', 'vendor':'E', 'offer_price':9.00},
{'offer_id':'oid_5','product_id': 'pid_2', 'vendor':'A', 'offer_price':5.10},
{'offer_id':'oid_6','product_id': 'pid_2', 'vendor':'B', 'offer_price':6.10},
{'offer_id':'oid_7','product_id': 'pid_2', 'vendor':'C', 'offer_price':7.10},
{'offer_id':'oid_8','product_id': 'pid_2', 'vendor':'D', 'offer_price':18.10},
{'offer_id':'oid_9','product_id': 'pid_2', 'vendor':'E', 'offer_price':9.10},
{'offer_id':'oid_10','product_id': 'pid_3', 'vendor':'A', 'offer_price':5.20},
{'offer_id':'oid_11','product_id': 'pid_3', 'vendor':'B', 'offer_price':6.20},
{'offer_id':'oid_12','product_id': 'pid_3', 'vendor':'C', 'offer_price':37.20},
{'offer_id':'oid_13','product_id': 'pid_3', 'vendor':'D', 'offer_price':8.20},
{'offer_id':'oid_14','product_id': 'pid_3', 'vendor':'E', 'offer_price':9.20},
{'offer_id':'oid_15','product_id': 'pid_3', 'vendor':'F', 'offer_price':77.20},
{'offer_id':'oid_16','product_id': 'pid_3', 'vendor':'G', 'offer_price':66.20},
]
import pandas as pd
import json
from collections import defaultdict, Counter
import itertools
import random
from timeit import default_timer as timer
# START MY TIMER TO ESTIMATE HOW LONG TAKE TO CALCULATE
start = timer()
print('Timer Start')
def generate_random_offers():
''' Generate random offers with this format:
{'offer_id':'oid_1','product_id': 'pid_1', 'ventor':'B', 'offer_price':5.00}
'''
_offers = []
_vendors = ['A','B','C','D','E']
_pids_1 = ['pid_1']
_pids_2 = ['pid_1','pid_2']
_pids_3 = ['pid_1','pid_2','pid_3']
_pids_4 = ['pid_1','pid_2','pid_3','pid_4']
_pids_5 = ['pid_1','pid_2','pid_3','pid_4','pid_5']
_pids_6 = ['pid_1','pid_2','pid_3','pid_4','pid_5','pid_6']
_pids_7 = ['pid_1','pid_2','pid_3','pid_4','pid_5','pid_6','pid_7']
_pids_5 = ['pid_1','pid_2','pid_3','pid_4','pid_5']
for i in range(1, 100):
random_price = round(random.uniform(1, 80), 2)
random_vendor = random.choice(_vendors)
random_pid = random.choice(_pids_4)
print(i)
schema = {}
schema['offer_id'] = f'oid_{i}'
schema['product_id'] = random_pid
schema['ventor'] = random_vendor
schema['offer_price'] = random_price
_offers.append(schema)
# print(_offers)
# write_json_file(_offers)
return _offers
#end
# initiate the variable that gona hold all the offers
OFFERS = []
OFFERS = generate_random_offers()
def get_the_vendors():
''' Return array of all individuals vendors in offers array '''
_vendors = []
for offer in OFFERS:
if offer['ventor'] not in _vendors:
_vendors.append(offer['ventor'])
# print(vendors)
return _vendors
#end
def get_the_products():
''' Get the products that is inside the array '''
_products = []
for offer in OFFERS:
if offer['product_id'] not in _products:
_products.append(offer['product_id'])
# print('products => ', _products)
return _products
#end
def get_offers_base_on_product():
''' Get the offers base on products '''
_offers_by_product = []
PRODUCTS = get_the_products()
for product in PRODUCTS:
_prod = {}
p = []
for offer in OFFERS:
if offer['product_id'] == product:
p.append(offer['offer_id'])
# _prod[offer['product_id']] = p
_prod = p
_offers_by_product.append(_prod)
# print('_offers_by_product', _offers_by_product)
return _offers_by_product
#end
def get_the_vendors_total_product_price():
''' Return the sum of the vendors offers '''
_v = []
VENDORS = get_the_vendors()
for vendor in VENDORS:
v = []
_sum = 0
for offer in OFFERS:
x = {}
if offer['ventor'] == vendor:
_sum += offer['offer_price']
print('sum of ' + vendor + ' => ', _sum)
x['vendor'] = vendor
x['sum'] = _sum
_v.append(x)
print(_v)
return _v
#end
def compinations():
list_of_offers_by_product = get_offers_base_on_product()
a = []
for _list in list_of_offers_by_product:
a.append(_list)
super_compinations = list(itertools.product(*a))
# print('ALL POSSIBLE COMBINATIONS', super_compinations)
print(super_compinations[0])
print(super_compinations[1])
print(super_compinations[2])
return super_compinations
#end
def get_sums():
super_compinations = compinations()
_sums = []
best_price = {}
min_price = 1000
min_set = ''
# for i in range(30):
for i in range(len(super_compinations)):
price = 0
for ii in range(len(super_compinations[i])):
offer_id = super_compinations[i][ii]
for _offer in OFFERS:
try:
if _offer['offer_id'] == offer_id:
price += _offer['offer_price']
# print(price)
except KeyboardInterrupt:
print('Interrupted')
_sums.append(price)
if price < min_price:
min_price = price
min_set = super_compinations[i]
print('========')
print('OFFERS SUMS => ', _sums)
print('========')
print('Min Price: ', min_price)
print('Min Set: ', min_set)
# STOP MY TIMER
elapsed_time = timer() - start # in seconds
print('TOOK: ', elapsed_time)
#end
# Heare a start the program to calculate all the combinations and
after I get all the combinations I try to get the sum of every combination one by one
get_sums()
_offers_by_product [['oid_1', 'oid_1', 'oid_2', 'oid_3', 'oid_4'], ['oid_5', 'oid_6', 'oid_7', 'oid_8', 'oid_9'], ['oid_10', 'oid_11', 'oid_12', 'oid_1
3', 'oid_14', 'oid_15', 'oid_16']]
ALL POSSIBLE COMBINATIONS [
('oid_1', 'oid_5', 'oid_10'),
('oid_1', 'oid_5', 'oid_11'),
('oid_1', 'oid_5', 'oid_12'),
('oid_1', 'oid_5', 'oid_13'),
('oid_1', 'oid_5', 'oid_14'),
('oid_1', 'oid_5', 'oid_15'),
('oid_1', 'oid_5', 'oid_16'),
('oid_1', 'oid_6', 'oid_10'),
('oid_1', 'oid_6', 'oid_11'),
### N..... Possible combinations mabe 1.000.000 milion
]
[4, 177.64, 206.63, 227.38, 152.29, 202.47, 211.85, 195.35, 171.37, 191.94,
187.51999999999998, 122.53999999999999, 139.34, 166.43, 135.62, 167.49, 182.12, 169.79
, 193.42000000000002, 147.42, 176.41, 197.16, 122.07, 172.25, 181.63, 165.13, 141.15, 161.72, 157.3, 150.73999999999998, 167.54, 194.63, 163.82, 195.69, 210.32,
193.54000000000002, 225.41000000000003, 240.04000000000002, 227.71, 251.34000000000003, 205.34,
234.33, 255.08, 179.99, 230.17000000000002, 239.55, 223.05, 192.67000000000002, 213.24, 208.82]
========
Min Price: 14.08
Min Set: ('oid_22', 'oid_16', 'oid_9', 'oid_71')
TOOK: 19.05843851931529
PS C:\Users\George35mk\Desktop\MACHINE LERNING EXAMPLES\Hello world>
专家能告诉我我的方法是否正确吗
最佳答案
不要使用机器学习,使用现成的求解器 Mixed-integer programming (这是基本的 discrete-optimization problem )或设计您自己的近似算法。这个问题可能是 NP-hard 问题,许多流行的 NP-hard 问题都有一些共同的特征,可以从中学习!
这里有一些演示,应该解释为此使用混合整数编程的基本思想!不过有一些注意事项:
MIP 求解器对于此类问题应该非常强大。即使在 NP-hard 情况和困难情况下,也应该能够在给定一些时间限制(以及一些已证明的界限!)的情况下获得良好的近似值!
或者你可以试试 pulp ,其中:
好的 MIP 求解器将很难被击败,即使在以最佳或好的近似为目标时使用这种简单的数学公式也是如此!
代码:
import numpy as np
import scipy as sp
import cvxpy as cvx
np.random.seed(1)
""" Synthetic problem """
N = 3 # Products to oder
M = 5 # Vendors
# Shipping costs
v_ship_c = np.random.choice([1, 3, 5], size=M) # vendor shipping costs if vendor used
# indepenent on number of products
# Product prices
product_prices_mean = np.random.random(size=N) * 50
p_price_v = np.repeat(product_prices_mean, M).reshape(N,M) + np.random.normal(size=(N, M)) * 2
p_price_v = np.clip(p_price_v, 1, np.inf) # min cost of 1
# Product availability
p_v_avail = np.random.choice([0,1], size=(N, M), p=[0.2, 0.8])
assert np.all(np.count_nonzero(p_v_avail, axis=1) > 0) # feasible solution
# Print
print('# products ordered: ', N)
print('# vendors: ', M)
print('Vendor shipping costs')
print(v_ship_c)
print('Mean product prices')
print(product_prices_mean)
print('Vendor-specific product prices')
print(p_price_v)
print('Vendor-product availability')
print(p_v_avail)
""" Optimization problem """
bigM = 1e4 # big-M constant / CRITICAL!
# "http://scip.zib.de/workshop/scip_lodi.pdf"
X = cvx.Bool(N, M) # [p,v] == 1 iff p ordered from v
Y = cvx.Bool(M) # [v] == 1 iff vendor v used -> shipping
objective_product_costs = cvx.sum_entries(cvx.mul_elemwise(p_price_v, X))
objective_shipping_costs = sum(v_ship_c * Y)
objective = cvx.Minimize(objective_product_costs + objective_shipping_costs)
constraints = [cvx.sum_entries(X, axis=1) >= 1] # at least one of each product ordered
# >= more relaxed than == and equal solution
# given costs are positive!
# will never order 2 as more exp than 1!
not_available = np.where(p_v_avail == 0)
constraints.append(X[not_available] == 0) # can't order from v if v not having p
constraints.append(cvx.sum_entries(X, axis=0).T <= cvx.mul_elemwise(bigM, Y)) # indicator if vendor used
problem = cvx.Problem(objective, constraints)
problem.solve()
""" Output solution """
print(problem.status)
print('Total costs: ', problem.value)
print('Product costs: ', round(objective_product_costs.value, 2))
print('Shipping costs: ', round(objective_shipping_costs.value, 2))
print('Order matrix')
print(np.round(X.value))
print('Shipping matrix')
print(np.round(Y.value.T))
输出:
# products ordered: 3
# vendors: 5
Vendor shipping costs
[3 1 1 3 3]
Mean product prices
[ 7.33779454 4.61692974 9.31301057]
Vendor-specific product prices
[[ 5.12592439 4.02876364 2.61085733 9.60848524 5.30376627]
[ 5.89165337 2.89711652 8.162145 2.39620363 4.97935827]
[ 10.4417003 8.17999011 10.77296176 10.05899815 10.38063239]]
Vendor-product availability
[[1 1 1 1 1]
[0 1 1 1 1]
[1 0 1 1 1]]
optimal
Total costs: 18.280935453799668
Product costs: 16.28
Shipping costs: 2.0
Order matrix
[[ 0. 0. 1. 0. 0.]
[ 0. 1. 0. 0. 0.]
[ 0. -0. 1. 0. 0.]]
Shipping matrix
[[ 0. 1. 1. 0. 0.]]
这个小例子在 0.01 秒内被这个玩具求解器解决了。更大的实例当然会表现不同!
关于python - 我如何获得限制供应商(运输)的最佳优惠组合,以及我如何使用 python 或机器学习获得最佳价格,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46888182/
我需要一些帮助。 我希望“总计”由“数量*价格=总计”计算(到目前为止没问题)。问题是我还需要通过“总/价格=数量”来计算“数量”,即如果一个字段发生更改,另一个字段也会自动更改。 我做了一个非常简单
我试图将每件商品的数量和价格相乘来计算总数,但我的警报中出现错误。 $.each(data.items, function(index, d){ var calcultest = d.pric
我想获得格式化的价格但没有货币符号,我只想使用 magento 的标准功能! $product->getFinalPrice(); => 19.9900 Mage::helper('core')->f
我正在尝试获取特定月份和年份中所有父类别的总价格。父类别是 parent_id == 0 的任何类别。我的查询如下所示: SELECT ROUND(SUM(od.total_price)) a
请帮我摆脱我的头痛..提前我为我的糟糕语言道歉,无论是英语还是mysql。希望有人能理解这个问题..:) 我有一个数据库,任何人都可以记录各个商店中各种产品的价格。以下查询是一个半理论示例,可能根本不
下面是我需要在数据库中设计的示例: 会有一个价格选项,如果有的话,会有一个特价选项,然后我想知道如果我希望其中一个选项是“免费”的,我该怎么做。 另请参阅根据所在国家/地区会有不同的货币。这是我的想法
商品价格格式 999,99 999 - 1 ..4 digits , - comma sign marks decimal point 99 - 2 digits after price Postg
我有这个表 stk +---------+--------------+ | Field | Type | +---------+--------------+ | id
是否有一个简单的格式化程序可以将我的字符串格式化为价格? 所以我的字符串是:300000 我想用空格来“300 000” or 1000000 "1 000 000" 张国荣 最佳答案 这样做: St
我想知道是否可以使用不依赖于 Excel 应用程序本地化(欧盟/美国)的 Excel 公式来自定义数字格式? 例如,我的值为 1291660。 然后使用公式=TEXT(A1;"# ##0,00") .
这是我的代码,对于价格 slider : $("#price-slider").ionRangeSlider({ min: 130, max: 575, onChange :
用户可以使用价格创建一个新实体。价格可以使用不同的货币(EUR,USD ...),因此我们可以乘以(price * convert_rate)得到实际价格。 我想做的是根据价格过滤记录,具体取决于前端
我正在尝试隐藏小数位在类型输入字段上,例如 数字从0.00开始 因此,输入字段中的第一个位置将为 0.00 我输入的1比它应该变成0.01 我输入的2比它应该变成0.12 比 0 所以它应该变成 1.
$res=mysql_query($qry); while($row= mysql_fetch_array($res)) { echo "".$row['Food_Name']." ".$row['P
我们正在为我们的新项目寻找信用卡网关。那里一片困惑,所有人都想把你切成碎片。每次我与他们交谈时,他们都有不同的费率,每次更新报价时,他们都会更改一些价格。 我们正在使用 .net、C#、asp.net
我已经创建了一个 jQuery 价格 slider ,但我不确定如何让过滤区域以实际价格范围开始?目前它有“$[object Object] - $[object Object]”,而我希望它有“$2
我已经创建了 jquery 价格 slider ,但我不确定如何过滤我的结果,以便在滑动时您只能看到具有该值范围内的产品。 HTML: Price range:
我有一个页面,其中有一个表格,我们可以在其中选择一个产品,输入它的数量和价格,然后应在最后一列中计算金额,并应添加新行以输入更多产品,直到我们完成为止。
我创建了电子商务网站,即将提供午餐和晚餐服务。我在这里提出问题/问题是因为我知道这里有很多可以帮助我的传奇人物。我在网站上添加了套餐/计划部分。 1. Weekly 2. Monthly 以下是订
我的网站需要一个简单的 jQuery 价格 slider 。从 0 英镑到 1000 英镑不等。 假设浏览器将 slider 设置为 100 英镑(例如),然后我需要一个立即购买按钮,该按钮将 sli
我是一名优秀的程序员,十分优秀!