- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
P
是一个 n*d 矩阵,包含 n
d 维样本。 P
在某些区域的密度是其他区域的数倍。我想选择 P
的一个子集,其中任何样本对之间的距离都大于 d0
,并且我需要它遍布整个区域。所有样本都具有相同的优先级,无需优化任何内容(例如覆盖区域或成对距离之和)。
这是一个示例代码,但它确实很慢。我需要更高效的代码,因为我需要多次调用它。
%% generating sample data
n_4 = 1000; n_2 = n_4*2;n = n_4*4;
x1=[ randn(n_4, 1)*10+30; randn(n_4, 1)*3 + 60];
y1=[ randn(n_4, 1)*5 + 35; randn(n_4, 1)*20 + 80 ];
x2 = rand(n_2, 1)*(max(x1)-min(x1)) + min(x1);
y2 = rand(n_2, 1)*(max(y1)-min(y1)) + min(y1);
P = [x1,y1;x2, y2];
%% eliminating close ones
tic
d0 = 1.5;
D = pdist2(P, P);D(1:n+1:end) = inf;
E = zeros(n, 1); % eliminated ones
for i=1:n-1
if ~E(i)
CloseOnes = (D(i,:)<d0) & ((1:n)>i) & (~E');
E(CloseOnes) = 1;
end
end
P2 = P(~E, :);
toc
%% plotting samples
subplot(121); scatter(P(:, 1), P(:, 2)); axis equal;
subplot(122); scatter(P2(:, 1), P2(:, 2)); axis equal;
编辑:子集应该有多大?
作为j_random_hacker在评论中指出,如果我们不对所选样本的数量定义约束,则可以说 P(1, :)
是最快的答案。它巧妙地显示了标题的不连贯性!但我认为当前的标题更好地描述了目的。因此,让我们定义一个约束条件:“如果可能,请尝试选择 m
个样本”。现在有了 m=n
的隐含假设,我们可以获得最大可能的子集。正如我之前提到的,一种更快的方法优于找到最佳答案的方法。
最佳答案
一遍又一遍地寻找最近的点表明了一种针对空间搜索进行了优化的不同数据结构。我建议使用 delaunay 三角剖分。
以下解决方案是“近似”的,因为它可能会删除比绝对必要的更多的点。我对所有计算进行批处理,并在每次迭代中移除导致距离过长的所有点,并且在许多情况下,移除一个点可能会移除同一迭代中稍后出现的边。如果这很重要,可以进一步处理边缘列表以避免重复,或者甚至找到要删除的点,这将影响最大距离。
这很快。
dt = delaunayTriangulation(P(:,1), P(:,2));
d0 = 1.5;
while 1
edge = edges(dt); % vertex ids in pairs
% Lookup the actual locations of each point and reorganize
pwise = reshape(dt.Points(edge.', :), 2, size(edge,1), 2);
% Compute length of each edge
difference = pwise(1,:,:) - pwise(2,:,:);
edge_lengths = sqrt(difference(1,:,1).^2 + difference(1,:,2).^2);
% Find edges less than minimum length
idx = find(edge_lengths < d0);
if(isempty(idx))
break;
end
% pick first vertex of each too-short edge for deletion
% This could be smarter to avoid overdeleting
points_to_delete = unique(edge(idx, 1));
% remove them. triangulation auto-updates
dt.Points(points_to_delete, :) = [];
% repeat until no edge is too short
end
P2 = dt.Points;
关于algorithm - 如何选择部分密集数据集的均匀分布子集?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36648384/
关闭。这个问题是not reproducible or was caused by typos .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 5 个月前关
我正在尝试使用摄像机跟踪多个人。我不想使用 blob 分割技术。我想做什么: 执行背景减法以获得隔离人们运动的掩码。 在这些区域执行基于网格的光流 -我最好的选择是什么? 我正在努力实现。我已经尝试过
OpenCV 有 very good documentation on generating SIFT descriptors ,但这是“弱 SIFT”的一个版本,其中关键点由原始 Lowe algo
我有一个 cholmod_dense 数据结构: cholmod_dense* ex = cholmod_l_solve(CHOLMOD_A, L, B, &com); 我想提取这些值并将它们复制到另
这是先前发布的关于在 python 中使用 OpenCVs 密集筛选实现的问题的后续问题 (OpenCV-Python dense SIFT)。 使用建议的代码进行密集筛选 dense=cv2
我是计算机视觉的新手。我正在学习 Dense SIFT 和 HOG。对于密集 SIFT,算法只是将每个点视为一个有趣的点并计算其梯度向量。 HOG 是另一种用梯度向量描述图像的方法。 我认为 Dens
我正在尝试使用 openCV-python 2.4 计算密集 SIFT import cv2 def gen_sift_features(gray, step_size, gamma): de
我正在使用 OpenCV 实现词袋图像分类器。最初我测试了在 SURF 关键点中提取的 SURF 描述符。我听说 Dense SIFT(或 PHOW)描述符更适合我的目的,所以我也尝试了它们。 令我惊
我有一个密集的 Ax=b 类型的方程组要在我的 C++ 程序中求解,我希望在 boost 中使用 UBLAS 来实现该解决方案。在其他一些问题中,我发现人们正在使用扩展 LAPACK,但不幸的是,它似
我目前有一台配备 Opteron 275 (2.2Ghz)(双核 CPU)和 4GB RAM 以及速度非常快的硬盘的机器。我发现即使是使用 C++ 模板(想想 boost 等)编译一些简单的项目时,我
我是一名优秀的程序员,十分优秀!