gpt4 book ai didi

r - 最小成本流 - R 中的网络优化

转载 作者:塔克拉玛干 更新时间:2023-11-03 02:53:27 25 4
gpt4 key购买 nike

我正在尝试在 R 中实现“Minimum Cost Network Flow”运输问题解决方案。

我知道这可以使用类似 lpSolve 的东西从头开始实现。但是,我看到“Maximum Flow”有一个方便的 igraph 实现。这样一个预先存在的解决方案会方便得多,但我找不到 Minimum Cost 的等效函数。

有没有 igraph 函数可以计算最小成本网络流量解决方案,或者有没有办法将 igraph::max_flow 函数应用于最小成本问题?

igraph 网络示例:

library(tidyverse)
library(igraph)

edgelist <- data.frame(
from = c(1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8),
to = c(2, 3, 4, 5, 6, 4, 5, 6, 7, 8, 7, 8, 7, 8, 9, 9),
capacity = c(20, 30, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99),
cost = c(0, 0, 1, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 6, 0, 0))

g <- graph_from_edgelist(as.matrix(edgelist[,c('from','to')]))

E(g)$capacity <- edgelist$capacity
E(g)$cost <- edgelist$cost

plot(g, edge.label = E(g)$capacity)
plot(g, edge.label = E(g)$cost)

enter image description here enter image description here

这是一个具有定向边、“源节点”(1) 和“汇节点”(9) 的网络。每条边都有一个“容量”(这里通常表示为 99 表示无限制)和一个“成本”(一个单位流经该边的成本)。我想找到流的整数向量 (x, length = 9),它可以在通过网络传输预定义流时将成本降至最低(假设 50 个单位,从节点 1 到节点 9)。

免责声明:this post问了一个类似的问题,但没有得到令人满意的答案,而且已经过时了(2012 年)。

最佳答案

如有兴趣,以下是我最终解决此问题的方法。我使用了一个边缘数据框,其中包含 to 节点、from 节点、cost 属性和 capacity 属性,用于创建每个边约束矩阵。随后,我使用 lpSolve 包将其输入到线性优化中。下面逐步介绍。


从上面示例中的边缘列表数据框开始

library(magrittr)

# Add edge ID
edgelist$ID <- seq(1, nrow(edgelist))

glimpse(edgelist)

看起来像这样:

Observations: 16
Variables: 4
$ from <dbl> 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8
$ to <dbl> 2, 3, 4, 5, 6, 4, 5, 6, 7, 8, 7, 8, 7, 8, 9, 9
$ capacity <dbl> 20, 30, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99
$ cost <dbl> 0, 0, 1, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 6, 0, 0
$ ID <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

创建约束矩阵

createConstraintsMatrix <- function(edges, total_flow) {

# Edge IDs to be used as names
names_edges <- edges$ID
# Number of edges
numberof_edges <- length(names_edges)

# Node IDs to be used as names
names_nodes <- c(edges$from, edges$to) %>% unique
# Number of nodes
numberof_nodes <- length(names_nodes)

# Build constraints matrix
constraints <- list(
lhs = NA,
dir = NA,
rhs = NA)

#' Build capacity constraints ------------------------------------------------
#' Flow through each edge should not be larger than capacity.
#' We create one constraint for each edge. All coefficients zero
#' except the ones of the edge in question as one, with a constraint
#' that the result is smaller than or equal to capacity of that edge.

# Flow through individual edges
constraints$lhs <- edges$ID %>%
length %>%
diag %>%
set_colnames(edges$ID) %>%
set_rownames(edges$ID)
# should be smaller than or equal to
constraints$dir <- rep('<=', times = nrow(edges))
# than capacity
constraints$rhs <- edges$capacity


#' Build node flow constraints -----------------------------------------------
#' For each node, find all edges that go to that node
#' and all edges that go from that node. The sum of all inputs
#' and all outputs should be zero. So we set inbound edge coefficients as 1
#' and outbound coefficients as -1. In any viable solution the result should
#' be equal to zero.

nodeflow <- matrix(0,
nrow = numberof_nodes,
ncol = numberof_edges,
dimnames = list(names_nodes, names_edges))

for (i in names_nodes) {

# input arcs
edges_in <- edges %>%
filter(to == i) %>%
select(ID) %>%
unlist
# output arcs
edges_out <- edges %>%
filter(from == i) %>%
select(ID) %>%
unlist

# set input coefficients to 1
nodeflow[
rownames(nodeflow) == i,
colnames(nodeflow) %in% edges_in] <- 1

# set output coefficients to -1
nodeflow[
rownames(nodeflow) == i,
colnames(nodeflow) %in% edges_out] <- -1
}

# But exclude source and target edges
# as the zero-sum flow constraint does not apply to these!
# Source node is assumed to be the one with the minimum ID number
# Sink node is assumed to be the one with the maximum ID number
sourcenode_id <- min(edges$from)
targetnode_id <- max(edges$to)
# Keep node flow values for separate step below
nodeflow_source <- nodeflow[rownames(nodeflow) == sourcenode_id,]
nodeflow_target <- nodeflow[rownames(nodeflow) == targetnode_id,]
# Exclude them from node flow here
nodeflow <- nodeflow[!rownames(nodeflow) %in% c(sourcenode_id, targetnode_id),]

# Add nodeflow to the constraints list
constraints$lhs <- rbind(constraints$lhs, nodeflow)
constraints$dir <- c(constraints$dir, rep('==', times = nrow(nodeflow)))
constraints$rhs <- c(constraints$rhs, rep(0, times = nrow(nodeflow)))


#' Build initialisation constraints ------------------------------------------
#' For the source and the target node, we want all outbound nodes and
#' all inbound nodes to be equal to the sum of flow through the network
#' respectively

# Add initialisation to the constraints list
constraints$lhs <- rbind(constraints$lhs,
source = nodeflow_source,
target = nodeflow_target)
constraints$dir <- c(constraints$dir, rep('==', times = 2))
# Flow should be negative for source, and positive for target
constraints$rhs <- c(constraints$rhs, total_flow * -1, total_flow)

return(constraints)
}

constraintsMatrix <- createConstraintsMatrix(edges, 30)

结果应该是这样的

$lhs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 1 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0
4 0 0 1 0 0 1 0 0 -1 -1 0 0 0 0 0 0
5 0 0 0 1 0 0 1 0 0 0 -1 -1 0 0 0 0
6 0 0 0 0 1 0 0 1 0 0 0 0 -1 -1 0 0
7 0 0 0 0 0 0 0 0 1 0 1 0 1 0 -1 0
8 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 -1
source -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
target 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

$dir
[1] "<=" "<=" "<=" "<=" "<=" "<=" "<=" "<=" "<=" "<=" "<=" "<=" "<=" "<="
[15] "<=" "<=" "==" "==" "==" "==" "==" "==" "==" "==" "=="

$rhs
[1] 20 30 99 99 99 99 99 99 99 99 99 99 99 99 99 99 0
[18] 0 0 0 0 0 0 -30 30

将约束条件馈送到 lpSolve 以获得理想的解决方案

library(lpSolve)

# Run lpSolve to find best solution
solution <- lp(
direction = 'min',
objective.in = edgelist$cost,
const.mat = constraintsMatrix$lhs,
const.dir = constraintsMatrix$dir,
const.rhs = constraintsMatrix$rhs)

# Print vector of flow by edge
solution$solution

# Include solution in edge dataframe
edgelist$flow <- solution$solution

现在我们可以将边转换为图形对象并绘制解决方案

library(igraph)

g <- edgelist %>%
# igraph needs "from" and "to" fields in the first two colums
select(from, to, ID, capacity, cost, flow) %>%
# Make into graph object
graph_from_data_frame()

# Get some colours in to visualise cost
E(g)$color[E(g)$cost == 0] <- 'royalblue'
E(g)$color[E(g)$cost == 1] <- 'yellowgreen'
E(g)$color[E(g)$cost == 2] <- 'gold'
E(g)$color[E(g)$cost >= 3] <- 'firebrick'

# Flow as edge size,
# cost as colour
plot(g, edge.width = E(g)$flow)

graph with flow of optimal solution

希望它有趣/有用:)

关于r - 最小成本流 - R 中的网络优化,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43616480/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com