- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
假设我有一个正整数向量 V。如果整数的总和大于正整数 N,我想重新调整 V 中的整数,使总和 <= N。V 中的元素必须保持在零以上。 V的长度保证为<= N。
是否有一种算法可以在线性时间内执行这种重新缩放?
这不是家庭作业,顺便说一句 :)。我需要将映射从符号重新调整为符号频率以使用范围编码。
一些快速思考和谷歌搜索没有给出问题的解决方案。
编辑:
好吧,这个问题有点不清楚。 “重新缩放”意味着“正常化”。也就是说,将 V 中的整数(例如通过将它们乘以常数)转换为更小的正整数,从而满足 sum(V) <= N 的标准。保留的整数之间的比率越好,压缩效果就越好。
问题在这种情况下是开放式的,该方法不需要找到最佳(例如,最小二乘拟合意义上)的方式来保持比率,而是一个“好的”方式。按照建议将整个向量设置为 1 是 Not Acceptable (除非被迫)。例如,找到满足总和标准的最小除数(定义如下)就足够了。
下面的朴素算法不起作用。
这在 v = [1,1,1,10] 且 N = 5 时失败。
divisor = ceil(13 / 5) = 3.
V := [1,1,1, max(1, floor(10/3)) = 3]
Sv is now 6 > 5.
在这种情况下,正确的规范化是 [1,1,1,2]
一种可行的算法是对除数(如上定义)进行二进制搜索,直到找到 [1,N] 中满足总和标准的最小除数。从 ceil(Sv/N) 猜测开始。然而,这在操作次数上不是线性的,而是与 len(V)*log(len(V)) 成正比。
我开始认为在一般情况下不可能在线性时间内做好。我可能会求助于某种启发式方法。
最佳答案
只需将所有整数除以它们的 Greatest Common Divisor .您可以通过 Euclid's Algorithm 的多个应用程序有效地找到 GCD .
d = 0
for x in xs:
d = gcd(d, x)
xs = [x/d for x in xs]
积极的一点是,您始终以这种方式获得尽可能小的表示,而不会丢失任何精度,也无需选择特定的 N。缺点是,如果您的频率是大的互质数,您将别无选择,牺牲精度(并且您没有指定在这种情况下应该做什么)。
关于algorithm - 重新缩放整数向量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/6020635/
我想用一个向量执行以下操作。 a = np.array(np.arange(0, 4, 1)) 我想得到一个乘法,结果是一个矩阵 | 0 1 2 3 4 -| - - - - - - - 0
正如标题所述,我正在尝试使用 gsub,其中我使用向量作为“模式”和“替换”。目前,我的代码如下所示: names(x1) names(x1) [1] "2110023264A.Ms.Amp
所以当我需要做一些线性代数时,我更容易将向量视为列向量。因此,我更喜欢 (n,1) 这样的形状。 形状 (n,) 和 (n,1) 之间是否存在显着的内存使用差异? 什么是首选方式? 以及如何将 (n,
我不明白为什么 seq() 可以根据元素中是否存在小数点输出不同的类,而 c() 总是创建一个 num向量,无论是否存在小数。 例如: seqDec <- seq(1, 2, 0.5) # num v
机器学习与传统编程的一个重要区别在于机器学习比传统编程涉及了更多的数学知识。不过,随着机器学习的飞速发展,各种框架应运而生,在数据分析等应用中使用机器学习时,使用现成的库和框架成为常态,似乎越来越不需
寻找有关如何将 RegEnable 用作向量的示例/建议。此外,我想控制输入和使能信号成为 Vector 中寄存器索引的函数。 首先,我如何声明 RegEnable() 的 Vector,其次如何迭代
假设我有一个包含变量名称的向量 v1,我想为每个变量分配一个值(存储在单独的向量中)。我如何在没有迭代的情况下做到这一点? v1 <- c("a","b","c") v2 <- c(1,2,3) 我想
R 提供了三种类型来存储同质对象列表:向量、矩阵 和数组。 据我所知: 向量是一维数组的特殊情况 矩阵是二维数组的特例 数组还可以具有任意维度级别(包括 1 和 2)。 在向量上使用一维数组和在矩阵上
我正在绕着numpy/scipy中的所有选项转圈。点积、乘法、matmul、tensordot、einsum 等 我想将一维向量与二维矩阵(这将是稀疏csr)相乘并对结果求和,这样我就有了一个一维向量
我是一个 IDL 用户,正在慢慢切换到 numpy/scipy,并且有一个操作我在 IDL 中非常经常做,但无法用 numpy 重现: IDL> a = [2., 4] IDL> b = [3., 5
在python计算机图形工具包中,有一个vec3类型用于表示三分量向量,但是我如何进行以下乘法: 三分量向量乘以其转置结果得到 3*3 矩阵,如下例所示: a = vec3(1,1,1) matrix
我正在构建一款小型太空射击游戏。当涉及到空间物理学时,我曾经遇到过数学问题。 用文字描述如下:有一个最大速度。因此,如果您全速行驶,您的飞船将在屏幕上一遍又一遍地移动,就像在旧的小行星游戏中一样。如果
我正在尝试在 python 中实现 Vector3 类。如果我用 c++ 或 c# 编写 Vector3 类,我会将 X、Y 和 Z 成员存储为 float ,但在 python 中,我读到鸭式是要走
我是 Spark 和 Scala 的新手,我正在尝试阅读有关 MLlib 的文档。 http://spark.apache.org/docs/1.4.0/mllib-data-types.html上的
我有一个包含四个逻辑向量的数据框, v1 , v2 , v3 , v4 是对还是错。我需要根据 boolean 向量的组合对数据帧的每一行进行分类(例如, "None" , "v1 only" , "
我正在创建一个可视化来说明主成分分析的工作原理,方法是绘制一些实际数据的特征值(为了说明的目的,我将子集化为二维)。 我想要来自 this fantastic PCA tutorial 的这两个图的组
我有以下排序向量: > v [1] -1 0 1 2 4 5 2 3 4 5 7 8 5 6 7 8 10 11 如何在不遍历整个向量的情况下删除 -1、0 和 11
有什么方法可以让 R 对向量和其他序列数据结构使用基于零的索引,例如在 C 和 python 中。 我们有一些代码在 C 中进行一些数值处理,我们正在考虑将其移植到 R 中以利用其先进的统计功能,但是
我有一个函数可以查询我的数据库中最近的 X 个条目,它返回一个 map 向量,如下所示: [{:itemID "item1" :category "stuff" :price 5} {:itemI
我有 ([[AA ww me bl qw 100] [AA ee rr aa aa 100] [AA qq rr aa aa 90]] [[CC ww me bl qw 100] [CC ee rr
我是一名优秀的程序员,十分优秀!