- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
在Cracking the Coding Interview, Fourth Edition ,有这样一个问题:
A circus is designing a tower routine consisting of people standing atop one anoth- er’s shoulders For practical and aesthetic reasons, each person must be both shorter and lighter than the person below him or her Given the heights and weights of each person in the circus, write a method to compute the largest possible number of people in such a tower.
EXAMPLE: Input (ht, wt): (65, 100) (70, 150) (56, 90) (75, 190) (60, 95) (68, 110)
Output: The longest tower is length 6 and includes from top to bottom: (56, 90) (60,95) (65,100) (68,110) (70,150) (75,190)
这是它的书中的解决方案
Step 1 Sort all items by height first, and then by weight This means that if all the heights are unique, then the items will be sorted by their height If heights are the same, items will be sorted by their weight
Step 2 Find the longest sequence which contains increasing heights and increasing weights To do this, we:
a) Start at the beginning of the sequence Currently, max_sequence is empty
b) If, for the next item, the height and the weight is not greater than those of the previous item, we mark this item as “unfit”
c) If the sequence found has more items than “max sequence”, it becomes “max sequence”
d) After that the search is repeated from the “unfit item”, until we reach the end of the original sequence
我对它的解决方案有一些疑问。
第一季度
我认为这个解决方案是错误的。
例如
(3,2) (5,9) (6,7) (7,8)
显然,(6,7)
是不合适的项,但是 (7,8)
呢?根据解决方案,它不是不适合,因为它的 h 和 w 比 (6,7)
大,但是,它不能被考虑到序列中,因为 (7,8)
不适合 (5,9)
。
我说得对吗?
如果我是对的,解决方法是什么?
第二季度
我相信即使有针对上述解决方案的修复,解决方案的样式将导致至少O(n^2)
,因为它需要一次又一次地迭代,根据到第 2-d 步。
那么有没有可能有一个O(nlogn)的解呢?
最佳答案
你可以用动态规划来解决这个问题。
按高度对剧团进行排序。为简单起见,假设所有高度 h_i 和重量 w_j 都是不同的。因此h_i是递增序列。
我们计算一个序列 T_i,其中 T_i 是一座塔,第 i 个人位于最大尺寸的顶部。 T_1 就是{1}。我们可以从前面的 T_j 推导出后续的 T_k——找到最大的塔 T_j,它可以承受 k 的重量(w_j < w_k)并站在上面。
剧团中可能最大的塔就是 T_i 中最大的塔。
此算法需要 O(n**2) 时间,其中 n 是剧团的基数。
关于人类高耸的算法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/17798720/
滑动窗口限流 滑动窗口限流是一种常用的限流算法,通过维护一个固定大小的窗口,在单位时间内允许通过的请求次数不超过设定的阈值。具体来说,滑动窗口限流算法通常包括以下几个步骤: 初始化:设置窗口
表达式求值:一个只有+,-,*,/的表达式,没有括号 一种神奇的做法:使用数组存储数字和运算符,先把优先级别高的乘法和除法计算出来,再计算加法和减法 int GetVal(string s){
【算法】前缀和 题目 先来看一道题目:(前缀和模板题) 已知一个数组A[],现在想要求出其中一些数字的和。 输入格式: 先是整数N,M,表示一共有N个数字,有M组询问 接下来有N个数,表示A[1]..
1.前序遍历 根-左-右的顺序遍历,可以使用递归 void preOrder(Node *u){ if(u==NULL)return; printf("%d ",u->val);
先看题目 物品不能分隔,必须全部取走或者留下,因此称为01背包 (只有不取和取两种状态) 看第一个样例 我们需要把4个物品装入一个容量为10的背包 我们可以简化问题,从小到大入手分析 weightva
我最近在一次采访中遇到了这个问题: 给出以下矩阵: [[ R R R R R R], [ R B B B R R], [ B R R R B B], [ R B R R R R]] 找出是否有任
我正在尝试通过 C++ 算法从我的 outlook 帐户发送一封电子邮件,该帐户已经打开并记录,但真的不知道从哪里开始(对于 outlook-c++ 集成),谷歌也没有帮我这么多。任何提示将不胜感激。
我发现自己像这样编写了一个手工制作的 while 循环: std::list foo; // In my case, map, but list is simpler auto currentPoin
我有用于检测正方形的 opencv 代码。现在我想在检测正方形后,代码运行另一个命令。 代码如下: #include "cv.h" #include "cxcore.h" #include "high
我正在尝试模拟一个 matlab 函数“imfill”来填充二进制图像(1 和 0 的二维矩阵)。 我想在矩阵中指定一个起点,并像 imfill 的 4 连接版本那样进行洪水填充。 这是否已经存在于
我正在阅读 Robert Sedgewick 的《C++ 算法》。 Basic recurrences section it was mentioned as 这种循环出现在循环输入以消除一个项目的递
我正在思考如何在我的日历中生成代表任务的数据结构(仅供我个人使用)。我有来自 DBMS 的按日期排序的任务记录,如下所示: 买牛奶(18.1.2013) 任务日期 (2013-01-15) 任务标签(
输入一个未排序的整数数组A[1..n]只有 O(d) :(d int) 计算每个元素在单次迭代中出现在列表中的次数。 map 是balanced Binary Search Tree基于确保 O(nl
我遇到了一个问题,但我仍然不知道如何解决。我想出了如何用蛮力的方式来做到这一点,但是当有成千上万的元素时它就不起作用了。 Problem: Say you are given the followin
我有一个列表列表。 L1= [[...][...][.......].......]如果我在展平列表后获取所有元素并从中提取唯一值,那么我会得到一个列表 L2。我有另一个列表 L3,它是 L2 的某个
我们得到二维矩阵数组(假设长度为 i 和宽度为 j)和整数 k我们必须找到包含这个或更大总和的最小矩形的大小F.e k=7 4 1 1 1 1 1 4 4 Anwser是2,因为4+4=8 >= 7,
我实行 3 类倒制,每周换类。顺序为早类 (m)、晚类 (n) 和下午类 (a)。我固定的订单,即它永远不会改变,即使那个星期不工作也是如此。 我创建了一个函数来获取 ISO 周数。当我给它一个日期时
假设我们有一个输入,它是一个元素列表: {a, b, c, d, e, f} 还有不同的集合,可能包含这些元素的任意组合,也可能包含不在输入列表中的其他元素: A:{e,f} B:{d,f,a} C:
我有一个子集算法,可以找到给定集合的所有子集。原始集合的问题在于它是一个不断增长的集合,如果向其中添加元素,我需要再次重新计算它的子集。 有没有一种方法可以优化子集算法,该算法可以从最后一个计算点重新
我有一个包含 100 万个符号及其预期频率的表格。 我想通过为每个符号分配一个唯一(且前缀唯一)的可变长度位串来压缩这些符号的序列,然后将它们连接在一起以表示序列。 我想分配这些位串,以使编码序列的预
我是一名优秀的程序员,十分优秀!