gpt4 book ai didi

algorithm - 寻找最小长度 RLE

转载 作者:塔克拉玛干 更新时间:2023-11-03 02:40:31 24 4
gpt4 key购买 nike

经典的 RLE 算法通过使用数字来表示数字后面的字符在文本中该位置出现的次数来压缩数据。例如:

AAABBAAABBCECE => 3A2B3A2B1C1E1C1E

但是,在上面的示例中,该方法导致压缩文本使用更多空间。更好的想法是使用数字来表示数字后面的 substring 在给定文本中出现的次数。例如:

AAABBAAABBCECE => 2AAABB2CE(“AAABB”两次,然后“CE”两次)。

现在,我的问题是:如何使用这种方法实现一种高效算法,找出最佳 RLE 中的最少字符数?存在蛮力方法,但我需要更快的方法(最多 O(length2))。也许我们可以使用动态规划?

最佳答案

可以通过动态规划在二次三次次二次时间内完成。

这是一些 Python 代码:

import sys
import numpy as np

bignum = 10000

S = sys.argv[1] #'AAABBAAABBCECE'
N = len(S)

# length of longest substring match bet s[i:] and s[j:]
maxmatch = np.zeros( (N+1,N+1), dtype=int)

for i in xrange(N-1,-1,-1):
for j in xrange(i+1,N):
if S[i] == S[j]:
maxmatch[i,j] = maxmatch[i+1,j+1]+1

# P[n,k] = cost of encoding first n characters given that last k are a block
P = np.zeros( (N+1,N+1),dtype=int ) + bignum
# Q[n] = cost of encoding first n characters
Q = np.zeros(N+1, dtype=int) + bignum

# base case: no cost for empty string
P[0,0]=0
Q[0]=0

for n in xrange(1,N+1):
for k in xrange(1,n+1):
if n-2*k >= 0:
# s1, s2 = S[n-k:n], S[n-2*k:n-k]
# if s1 == s2:
if maxmatch[n-2*k,n-k] >=k:
# Here we are incrementing the count: C x_1...x_k -> C+1 x_1...x_k
P[n,k] = min(P[n,k], P[n-k,k])
print 'P[%d,%d] = %d' % (n,k,P[n,k])
# Here we are starting a new block: 1 x_1...x_k
P[n,k] = min(P[n,k], Q[n-k] + 1 + k)
print 'P[%d,%d] = %d' % (n,k,P[n,k])
for k in xrange(1,n+1):
Q[n] = min(Q[n], P[n,k])

print

print Q[N]

您可以通过记住您一路上的选择来重建实际的编码。

我遗漏了一个小问题,那就是如果 C 很大,我们可能不得不使用一个额外的字节来保存 C+1。如果您使用的是 32 位整数,则在该算法运行时可行的任何上下文中都不会出现这种情况。如果您有时使用较短的整数来节省空间,那么您将不得不考虑一下,并且可能会根据最新 C 的大小向表中添加另一个维度。理论上,这可能会添加一个 log(N) 因子,但是我认为这在实践中不会很明显。

编辑:为了@Moron 的利益,这里是带有更多打印语句的相同代码,这样您就可以更容易地看到算法在想什么:

import sys
import numpy as np

bignum = 10000

S = sys.argv[1] #'AAABBAAABBCECE'
N = len(S)

# length of longest substring match bet s[i:] and s[j:]
maxmatch = np.zeros( (N+1,N+1), dtype=int)

for i in xrange(N-1,-1,-1):
for j in xrange(i+1,N):
if S[i] == S[j]:
maxmatch[i,j] = maxmatch[i+1,j+1]+1

# P[n,k] = cost of encoding first n characters given that last k are a block
P = np.zeros( (N+1,N+1),dtype=int ) + bignum
# Q[n] = cost of encoding first n characters
Q = np.zeros(N+1, dtype=int) + bignum

# base case: no cost for empty string
P[0,0]=0
Q[0]=0

for n in xrange(1,N+1):
for k in xrange(1,n+1):
if n-2*k >= 0:
# s1, s2 = S[n-k:n], S[n-2*k:n-k]
# if s1 == s2:
if maxmatch[n-2*k,n-k] >=k:
# Here we are incrementing the count: C x_1...x_k -> C+1 x_1...x_k
P[n,k] = min(P[n,k], P[n-k,k])
print "P[%d,%d] = %d\t I can encode first %d characters of S in only %d characters if I use my solution for P[%d,%d] with %s's count incremented" % (n\
,k,P[n,k],n,P[n-k,k],n-k,k,S[n-k:n])
# Here we are starting a new block: 1 x_1...x_k
P[n,k] = min(P[n,k], Q[n-k] + 1 + k)
print 'P[%d,%d] = %d\t I can encode first %d characters of S in only %d characters if I use my solution for Q[%d] with a new block 1%s' % (n,k,P[n,k],n,Q[\
n-k]+1+k,n-k,S[n-k:n])
for k in xrange(1,n+1):
Q[n] = min(Q[n], P[n,k])

print
print 'Q[%d] = %d\t I can encode first %d characters of S in only %d characters!' % (n,Q[n],n,Q[n])
print


print Q[N]

它在 ABCDABCDABCDBCD 上输出的最后几行是这样的:

Q[13] = 7        I can encode first 13 characters of S in only 7 characters!

P[14,1] = 9 I can encode first 14 characters of S in only 9 characters if I use my solution for Q[13] with a new block 1C
P[14,2] = 8 I can encode first 14 characters of S in only 8 characters if I use my solution for Q[12] with a new block 1BC
P[14,3] = 13 I can encode first 14 characters of S in only 13 characters if I use my solution for Q[11] with a new block 1DBC
P[14,4] = 13 I can encode first 14 characters of S in only 13 characters if I use my solution for Q[10] with a new block 1CDBC
P[14,5] = 13 I can encode first 14 characters of S in only 13 characters if I use my solution for Q[9] with a new block 1BCDBC
P[14,6] = 12 I can encode first 14 characters of S in only 12 characters if I use my solution for Q[8] with a new block 1ABCDBC
P[14,7] = 16 I can encode first 14 characters of S in only 16 characters if I use my solution for Q[7] with a new block 1DABCDBC
P[14,8] = 16 I can encode first 14 characters of S in only 16 characters if I use my solution for Q[6] with a new block 1CDABCDBC
P[14,9] = 16 I can encode first 14 characters of S in only 16 characters if I use my solution for Q[5] with a new block 1BCDABCDBC
P[14,10] = 16 I can encode first 14 characters of S in only 16 characters if I use my solution for Q[4] with a new block 1ABCDABCDBC
P[14,11] = 16 I can encode first 14 characters of S in only 16 characters if I use my solution for Q[3] with a new block 1DABCDABCDBC
P[14,12] = 16 I can encode first 14 characters of S in only 16 characters if I use my solution for Q[2] with a new block 1CDABCDABCDBC
P[14,13] = 16 I can encode first 14 characters of S in only 16 characters if I use my solution for Q[1] with a new block 1BCDABCDABCDBC
P[14,14] = 15 I can encode first 14 characters of S in only 15 characters if I use my solution for Q[0] with a new block 1ABCDABCDABCDBC

Q[14] = 8 I can encode first 14 characters of S in only 8 characters!

P[15,1] = 10 I can encode first 15 characters of S in only 10 characters if I use my solution for Q[14] with a new block 1D
P[15,2] = 10 I can encode first 15 characters of S in only 10 characters if I use my solution for Q[13] with a new block 1CD
P[15,3] = 11 I can encode first 15 characters of S in only 11 characters if I use my solution for P[12,3] with BCD's count incremented
P[15,3] = 9 I can encode first 15 characters of S in only 9 characters if I use my solution for Q[12] with a new block 1BCD
P[15,4] = 14 I can encode first 15 characters of S in only 14 characters if I use my solution for Q[11] with a new block 1DBCD
P[15,5] = 14 I can encode first 15 characters of S in only 14 characters if I use my solution for Q[10] with a new block 1CDBCD
P[15,6] = 14 I can encode first 15 characters of S in only 14 characters if I use my solution for Q[9] with a new block 1BCDBCD
P[15,7] = 13 I can encode first 15 characters of S in only 13 characters if I use my solution for Q[8] with a new block 1ABCDBCD
P[15,8] = 17 I can encode first 15 characters of S in only 17 characters if I use my solution for Q[7] with a new block 1DABCDBCD
P[15,9] = 17 I can encode first 15 characters of S in only 17 characters if I use my solution for Q[6] with a new block 1CDABCDBCD
P[15,10] = 17 I can encode first 15 characters of S in only 17 characters if I use my solution for Q[5] with a new block 1BCDABCDBCD
P[15,11] = 17 I can encode first 15 characters of S in only 17 characters if I use my solution for Q[4] with a new block 1ABCDABCDBCD
P[15,12] = 17 I can encode first 15 characters of S in only 17 characters if I use my solution for Q[3] with a new block 1DABCDABCDBCD
P[15,13] = 17 I can encode first 15 characters of S in only 17 characters if I use my solution for Q[2] with a new block 1CDABCDABCDBCD
P[15,14] = 17 I can encode first 15 characters of S in only 17 characters if I use my solution for Q[1] with a new block 1BCDABCDABCDBCD
P[15,15] = 16 I can encode first 15 characters of S in only 16 characters if I use my solution for Q[0] with a new block 1ABCDABCDABCDBCD

Q[15] = 9 I can encode first 15 characters of S in only 9 characters!

关于algorithm - 寻找最小长度 RLE,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/2261318/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com