- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我正在考虑针对一个问题的不同解决方案。假设我们有 K 个排序的链表,我们正在将它们合并为一个。所有这些列表共有 N 个元素。
众所周知的解决方案是使用优先级队列并从每个列表中弹出/推送第一个元素,我可以理解为什么它需要 O(N log K)
时间。
但是让我们来看看另一种方法。假设我们有一些 MERGE_LISTS(LIST1, LIST2)
过程,它合并两个排序列表,它会花费 O(T1 + T2)
时间,其中 T1
和 T2
代表 LIST1
和 LIST2
大小。
我们现在所做的通常是将这些列表配对并逐对合并它们(如果数字是奇数,例如,最后一个列表可以在第一步中忽略)。这通常意味着我们必须制作以下合并操作“树”:
N1, N2, N3...
代表LIST1, LIST2, LIST3
尺寸
O(N1 + N2) + O(N3 + N4) + O(N5 + N6) + ...
O(N1 + N2 + N3 + N4) + O(N5 + N6 + N7 + N8) + ...
O(N1 + N2 + N3 + N4 + .... + NK)
很明显,这些行将有 log(K)
行,每一行都实现了 O(N)
操作,所以 MERGE(LIST1, LIST2, ... , LISTK)
操作实际上等于 O(N log K)
。
我 friend 告诉我(两天前)这需要 O(K N)
时间。所以,问题是——我是在什么地方搞砸了还是他真的错了?如果我是对的,为什么不能使用这种“分而治之”的方法来代替优先队列方法?
最佳答案
如果要合并的列表数量较少,这种成对方案可能比优先级队列方法更快,因为每次合并的操作极少:基本上每个项目只有一次比较和两次指针重新分配(转移到一个新的单链表)。正如您所展示的,它是 O(N log K)
(log K
个步骤处理 N
个项目)。
但我认为,最好的优先级队列算法是 O(sqrt(log K))
或 O(log log U)
用于插入和删除(其中 U
是可能的不同优先级的数量)——如果你可以用一个值来确定优先级而不是必须使用比较——那么如果你正在合并可以给出的项目,例如整数优先级,并且 K
很大,那么您最好使用优先级队列。
关于algorithm - 合并k个排序链表——分析,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/2705366/
很难说出这里问的是什么。这个问题是含糊的、模糊的、不完整的、过于宽泛的或修辞性的,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开它,visit the help center 。 已关
我们可以说 O(K + (N-K)logK)相当于O(K + N logK)对于 1 < = K <= N ? 最佳答案 简短的回答是它们不等价,这取决于k 的值。如果k等于N,那么第一个复杂度是O(
我有以下解决方案,但我从其他评论者那里听说它是 O(N * K * K),而不是 O(N * K)其中 N 是 K 列表的(最大)长度,K 是列表的数量。例如,给定列表 [1, 2, 3] 和 [4,
我试图理解这些语法结构之间的语义差异。 if ((i% k) == (l % k) == 0) 和 if ((i % k) == 0 && (l % k) == 0) 最佳答案 您的特定表达式((i
我有时会使用一维数组: A = np.array([1, 2, 3, 4]) 或 2D 阵列(使用 scipy.io.wavfile 读取单声道或立体声信号): A = np.array([[1, 2
在文档聚类过程中,作为数据预处理步骤,我首先应用奇异向量分解得到U、S和Vt 然后通过选择适当数量的特征值,我截断了 Vt,这让我从阅读的内容中得到了很好的文档-文档相关性 here .现在我正在对矩
我问的是关于 Top K 算法的问题。我认为 O(n + k log n) 应该更快,因为……例如,如果您尝试插入 k = 300 和 n = 100000000,我们可以看到 O(n + k log
这个问题与另一个问题R:sample()密切相关。 。我想在 R 中找到一种方法来列出 k 个数字的所有排列,总和为 k,其中每个数字都是从 0:k 中选择的。如果k=7,我可以从0,1,...,7中
我目前正在评估基于隐式反馈的推荐系统。我对排名任务的评估指标有点困惑。具体来说,我希望通过精确度和召回率来进行评估。 Precision@k has the advantage of not requ
我在 Python 中工作,需要找到一种算法来生成所有可能的 n 维 k,k,...,k 数组,每个数组都沿轴有一行 1。因此,该函数接受两个数字 - n 和 k,并且应该返回一个数组列表,其中包含沿
我们有 N 对。每对包含两个数字。我们必须找到最大数 K,这样如果我们从给定的 N 对中取 J (1 2,如果我们选择三对 (1,2),我们只有两个不同的数字,即 1 和 2。 从一个开始检查每个可能
鉴于以下问题,我不能完全确定我当前的解决方案: 问题: 给定一个包含 n 元素的最大堆,它存储在数组 A 中,是否可以打印所有最大的 K 元素在 O(K*log(K)) 中? 我的回答: 是的,是的,
我明白了: val vector: RDD[(String, Array[String])] = [("a", {v1,v2,..}),("b", {u1,u2,..})] 想转换成: RDD[(St
我有 X 个正数,索引为 x_i。每个 x_i 需要进入 K 组之一(其中 K 是预先确定的)。令 S_j 为 K_j 中所有 x_i 的总和。我需要分配所有 x_i 以使所有 S_j 的方差最小化。
关闭。这个问题是not reproducible or was caused by typos .它目前不接受答案。 这个问题是由于错别字或无法再重现的问题引起的。虽然类似的问题可能是on-topi
我正在研究寻找原始数的算法,看到下面的语句,我不明白为什么。 while (k*k <= n) 优于 while (k <= Math.sqrt(n)) 是因为函数调用吗?该调用函数使用更多资源。 更
我想找到一种尽可能快的方法来将两个小 bool 矩阵相乘,其中小意味着 8x8、9x9 ... 16x16。这个例程会被大量使用,所以需要非常高效,所以请不要建议直截了当的解决方案应该足够快。 对于
有没有一种惯用的方法来获取 Set和 Function ,并获得 Map实时取景? (即 Map 由 Set 和 Function 组合支持,例如,如果将元素添加到 Set ,则相应的条目也存在于 M
这个问题在这里已经有了答案: Can a local variable's memory be accessed outside its scope? (20 个答案) returning addr
给定一个矩阵:- k = [1 2 3 ; 4 5 6 ; 7 8 NaN]; 如果我想用 0 替换一个数字,比如 2,我可以使用这个:k(k==2) =
我是一名优秀的程序员,十分优秀!