- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我有一堆二维点。您可以在左图中看到它们。它们形成了某种带有几只兔子耳朵的环。我的目标是找到大的内循环/椭圆,您可以在右侧看到它。
什么样的算法对这种情况有用。
我尝试了 RANSAC 算法的变体(取 5 个随机点,形成一个椭圆,确定一个分数并重复)。我以某种方式设计了评分函数,椭圆内的点得到很多负分,而椭圆外但非常接近的点得到很多正分。但结果一点也不乐观。该算法找到了环,但我得到了环的一些随机椭圆,而不是我想要的大内椭圆。
有什么好的策略吗?
最佳答案
这里有一些 best fit circle 的 Java 代码。
https://www.spaceroots.org/documents/circle/CircleFitter.java
// Copyright (c) 2005-2007, Luc Maisonobe
// All rights reserved.
//
// Redistribution and use in source and binary forms, with
// or without modification, are permitted provided that
// the following conditions are met:
//
// Redistributions of source code must retain the
// above copyright notice, this list of conditions and
// the following disclaimer.
// Redistributions in binary form must reproduce the
// above copyright notice, this list of conditions and
// the following disclaimer in the documentation
// and/or other materials provided with the
// distribution.
// Neither the names of spaceroots.org, spaceroots.com
// nor the names of their contributors may be used to
// endorse or promote products derived from this
// software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
// CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
// USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
// IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
// USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
package org.spaceroots;
import java.io.Reader;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.Locale;
import java.text.DecimalFormat;
import java.text.DecimalFormatSymbols;
import java.awt.geom.Point2D;
/** Class fitting a circle to a set of points.
* <p>This class implements the fitting algorithms described in the
* paper <a
* href="http://www.spaceroots.org/documents/circle/circle-fitting.pdf">
* Finding the circle that best fits a set of points</a></p>
* @author Luc Maisonobe
*/
public class CircleFitter {
/** Test program entry point.
* @param args command line arguments
*/
public static void main(String[] args) {
try {
BufferedReader br = null;
switch (args.length) {
case 0 :
br = new BufferedReader((new InputStreamReader(System.in)));
break;
case 1:
br = new BufferedReader(new FileReader(args[0]));
break;
default :
System.err.println("usage: java CircleFitter [file]");
System.exit(1);
}
// read the points, ignoring blank lines and comment lines
ArrayList list = new ArrayList();
int l = 0;
for (String line = br.readLine(); line != null; line = br.readLine()) {
++l;
line = line.trim();
if ((line.length() > 0) && (! line.startsWith("#"))) {
// this is a data line, we expect two numerical fields
String[] fields = line.split("\\s+");
if (fields.length != 2) {
throw new LocalException("syntax error at line " + l + ": " + line
+ "(expected two fields, found"
+ fields.length + ")");
}
// parse the fields and add the point to the list
list.add(new Point2D.Double(Double.parseDouble(fields[0]),
Double.parseDouble(fields[1])));
}
}
Point2D.Double[] points =
(Point2D.Double[]) list.toArray(new Point2D.Double[list.size()]);
DecimalFormat format =
new DecimalFormat("000.00000000",
new DecimalFormatSymbols(Locale.US));
// fit a circle to the test points
CircleFitter fitter = new CircleFitter();
fitter.initialize(points);
System.out.println("initial circle: "
+ format.format(fitter.getCenter().x)
+ " " + format.format(fitter.getCenter().y)
+ " " + format.format(fitter.getRadius()));
// minimize the residuals
int iter = fitter.minimize(100, 0.1, 1.0e-12);
System.out.println("converged after " + iter + " iterations");
System.out.println("final circle: "
+ format.format(fitter.getCenter().x)
+ " " + format.format(fitter.getCenter().y)
+ " " + format.format(fitter.getRadius()));
} catch (IOException ioe) {
System.err.println(ioe.getMessage());
System.exit(1);
} catch (LocalException le) {
System.err.println(le.getMessage());
System.exit(1);
}
}
/** Build a new instance with a default current circle.
*/
public CircleFitter() {
center = new Point2D.Double(0.0, 0.0);
rHat = 1.0;
points = null;
}
/** Initialize an approximate circle based on all triplets.
* @param points circular ring sample points
* @exception LocalException if all points are aligned
*/
public void initialize(Point2D.Double[] points)
throws LocalException {
// store the points array
this.points = points;
// analyze all possible points triplets
center.x = 0.0;
center.y = 0.0;
int n = 0;
for (int i = 0; i < (points.length - 2); ++i) {
Point2D.Double p1 = (Point2D.Double) points[i];
for (int j = i + 1; j < (points.length - 1); ++j) {
Point2D.Double p2 = (Point2D.Double) points[j];
for (int k = j + 1; k < points.length; ++k) {
Point2D.Double p3 = (Point2D.Double) points[k];
// compute the triangle circumcenter
Point2D.Double cc = circumcenter(p1, p2, p3);
if (cc != null) {
// the points are not aligned, we have a circumcenter
++n;
center.x += cc.x;
center.y += cc.y;
}
}
}
}
if (n == 0) {
throw new LocalException("all points are aligned");
}
// initialize using the circumcenters average
center.x /= n;
center.y /= n;
updateRadius();
}
/** Update the circle radius.
*/
private void updateRadius() {
rHat = 0;
for (int i = 0; i < points.length; ++i) {
double dx = points[i].x - center.x;
double dy = points[i].y - center.y;
rHat += Math.sqrt(dx * dx + dy * dy);
}
rHat /= points.length;
}
/** Compute the circumcenter of three points.
* @param pI first point
* @param pJ second point
* @param pK third point
* @return circumcenter of pI, pJ and pK or null if the points are aligned
*/
private Point2D.Double circumcenter(Point2D.Double pI,
Point2D.Double pJ,
Point2D.Double pK) {
// some temporary variables
Point2D.Double dIJ = new Point2D.Double(pJ.x - pI.x, pJ.y - pI.y);
Point2D.Double dJK = new Point2D.Double(pK.x - pJ.x, pK.y - pJ.y);
Point2D.Double dKI = new Point2D.Double(pI.x - pK.x, pI.y - pK.y);
double sqI = pI.x * pI.x + pI.y * pI.y;
double sqJ = pJ.x * pJ.x + pJ.y * pJ.y;
double sqK = pK.x * pK.x + pK.y * pK.y;
// determinant of the linear system: 0 for aligned points
double det = dJK.x * dIJ.y - dIJ.x * dJK.y;
if (Math.abs(det) < 1.0e-10) {
// points are almost aligned, we cannot compute the circumcenter
return null;
}
// beware, there is a minus sign on Y coordinate!
return new Point2D.Double(
(sqI * dJK.y + sqJ * dKI.y + sqK * dIJ.y) / (2 * det),
-(sqI * dJK.x + sqJ * dKI.x + sqK * dIJ.x) / (2 * det));
}
/** Minimize the distance residuals between the points and the circle.
* <p>We use a non-linear conjugate gradient method with the Polak and
* Ribiere coefficient for the computation of the search direction. The
* inner minimization along the search direction is performed using a
* few Newton steps. It is worthless to spend too much time on this inner
* minimization, so the convergence threshold can be rather large.</p>
* @param maxIter maximal iterations number on the inner loop (cumulated
* across outer loop iterations)
* @param innerThreshold inner loop threshold, as a relative difference on
* the cost function value between the two last iterations
* @param outerThreshold outer loop threshold, as a relative difference on
* the cost function value between the two last iterations
* @return number of inner loop iterations performed (cumulated
* across outer loop iterations)
* @exception LocalException if we come accross a singularity or if
* we exceed the maximal number of iterations
*/
public int minimize(int iterMax,
double innerThreshold, double outerThreshold)
throws LocalException {
computeCost();
if ((J < 1.0e-10) || (Math.sqrt(dJdx * dJdx + dJdy * dJdy) < 1.0e-10)) {
// we consider we are already at a local minimum
return 0;
}
double previousJ = J;
double previousU = 0.0, previousV = 0.0;
double previousDJdx = 0.0, previousDJdy = 0.0;
for (int iterations = 0; iterations < iterMax;) {
// search direction
double u = -dJdx;
double v = -dJdy;
if (iterations != 0) {
// Polak-Ribiere coefficient
double beta =
(dJdx * (dJdx - previousDJdx) + dJdy * (dJdy - previousDJdy))
/ (previousDJdx * previousDJdx + previousDJdy * previousDJdy);
u += beta * previousU;
v += beta * previousV;
}
previousDJdx = dJdx;
previousDJdy = dJdy;
previousU = u;
previousV = v;
// rough minimization along the search direction
double innerJ;
do {
innerJ = J;
double lambda = newtonStep(u, v);
center.x += lambda * u;
center.y += lambda * v;
updateRadius();
computeCost();
} while ((++iterations < iterMax)
&& ((Math.abs(J - innerJ) / J) > innerThreshold));
// global convergence test
if ((Math.abs(J - previousJ) / J) < outerThreshold) {
return iterations;
}
previousJ = J;
}
throw new LocalException("unable to converge after "
+ iterMax + " iterations");
}
/** Compute the cost function and its gradient.
* <p>The results are stored as instance attributes.</p>
*/
private void computeCost() throws LocalException {
J = 0;
dJdx = 0;
dJdy = 0;
for (int i = 0; i < points.length; ++i) {
double dx = points[i].x - center.x;
double dy = points[i].y - center.y;
double di = Math.sqrt(dx * dx + dy * dy);
if (di < 1.0e-10) {
throw new LocalException("cost singularity:"
+ " point at the circle center");
}
double dr = di - rHat;
double ratio = dr / di;
J += dr * (di + rHat);
dJdx += dx * ratio;
dJdy += dy * ratio;
}
dJdx *= 2.0;
dJdy *= 2.0;
}
/** Compute the length of the Newton step in the search direction.
* @param u abscissa of the search direction
* @param v ordinate of the search direction
* @return value of the step along the search direction
*/
private double newtonStep(double u, double v) {
// compute the first and second derivatives of the cost
// along the specified search direction
double sum1 = 0, sum2 = 0, sumFac = 0, sumFac2R = 0;
for (int i = 0; i < points.length; ++i) {
double dx = center.x - points[i].x;
double dy = center.y - points[i].y;
double di = Math.sqrt(dx * dx + dy * dy);
double coeff1 = (dx * u + dy * v) / di;
double coeff2 = di - rHat;
sum1 += coeff1 * coeff2;
sum2 += coeff2 / di;
sumFac += coeff1;
sumFac2R += coeff1 * coeff1 / di;
}
// step length attempting to nullify the first derivative
return -sum1 / ((u * u + v * v) * sum2
- sumFac * sumFac / points.length
+ rHat * sumFac2R);
}
/** Get the circle center.
* @return circle center
*/
public Point2D.Double getCenter() {
return center;
}
/** Get the circle radius.
* @return circle radius
*/
public double getRadius() {
return rHat;
}
/** Local exception class for algorithm errors. */
public static class LocalException extends Exception {
/** Build a new instance with the supplied message.
* @param message error message
*/
public LocalException(String message) {
super(message);
}
}
/** Current circle center. */
private Point2D.Double center;
/** Current circle radius. */
private double rHat;
/** Circular ring sample points. */
private Point2D.Double[] points;
/** Current cost function value. */
private double J;
/** Current cost function gradient. */
private double dJdx;
private double dJdy;
}
编辑 一旦你有了一个最佳拟合圆,你就可以缩小它直到满足某种内点与外点的比例。或者,您可以删除圆外的所有点并再次运行最佳拟合圆算法,重复此过程,直到您得到满意的答案。
关于algorithm - 寻找二维点云的内圆/椭圆,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31646720/
以下是我所拥有的。 我唯一需要的是让顶部填充。所以 12 点钟它应该是一个填充,广告 6 点钟它应该以渐变结束。 实现这一目标的最佳方法是什么? (这个想法是让它在下一步中旋转。) Codepen
我用 Canvas 绘制了倒计时 工作代码:http://jsfiddle.net/ajFsx/ window.onload = function() { canvas = document
我是stagexl的新手,我知道这是非常基本的问题,但是我找不到真正快速的答案,因此我认为将这个答案提供给与我处于同一职位的任何人都很好。 如何在stagexl中创建从x到y的线? 以及如何创建一个以
我想知道以编程方式为图像制作圆 Angular 的最佳方法是什么。这可以使用 PHP 或 javascript。一个算法也可以做同样的事情,我可以用 Image::Magick 或 GD 对其进行编码
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 8 年前。 Improve this q
我有一组二维点。我想找到: 包含所有点的最小三角形 包含所有点的最小圆。 是否有任何算法可以做到这一点?我遇到了 Convex Hull 来为一组点拟合凸多边形。但我想要一个圆形和三角形。 提前致谢
如何计算两个圆的交点。我希望在所有情况下都有两个、一个或没有交点。 我有中心点的 x 和 y 坐标,以及每个圆的半径。 Python 中的答案是首选,但任何可用的算法都是可以接受的。 最佳答案 Int
我需要用 QPainter 画一个圆。当我像这样使用 drawEllipse 函数时: void UserClass::Draw(QPainter &painter) { painter.sa
计算几何问题: 在多边形(例如BCDE)的边(例如EB)上随机选择点P0,以找到可能的点(即, P1,P2,P3,...) 基于给定距离(即 r)在其他边上。下面的演示展示了一个解决方案,它通过找到以
这个问题在这里已经有了答案: 关闭 13 年前。 重复: What is the best way to create rounded corners How to make a cross bro
我有一个 ionic4 应用程序,我需要在其中实现类似于下面卡片中的 img 效果。在边缘模糊到中心,然后在中心用另一个白色边框清除 我怎样才能做到这一点?请忽略编辑图标 最佳答案 .card
我想旋转一个 SVG 圆圈,同时保持其他元素不旋转 当我尝试使用 rotateZ(15deg) 旋转圆(白色)时,这就是我得到的: 这是我目前的进展: https://jsfiddle.net/41h
我正在尝试根据时间戳实现 LineString 挤压。正如 github 中提到的,它应该被实现,但事实并非如此。它应该类似于下面的屏幕截图。 到目前为止,我发现可以对多边形使用挤压,但随后我必须以某
我用了this question我创建了像this这样的形状但现在我不知道如何在第一次单击时为每个圆圈设置文本? (如井字棋) 最佳答案 给你! - 为了方便起见,我合并了它。只需单击圆圈即可查看其上
如何判断圆和矩形在二维欧几里得空间中是否相交? (即经典的二维几何) 最佳答案 这是我的做法: bool intersects(CircleType circle, RectType rect) {
圆 A 沿 x 轴向右移动。圆 B 沿 y 轴向上移动。我想知道他们是否会发生碰撞。 (不是何时,只是如果。) 半径相同,恒速度不同。 This answer似乎解决了这个问题,我的问题最好应该是这个
Relevant Codesandbox 我一直在我的应用程序中看到一种模式,当我创建圆形的div时,当它们的尺寸较小时,它们有时似乎具有边缘。请参见下面突出显示的代码的图像。为什么会发生这种情况,有
目前,我在 c3.js 中生成的图表图例是颜色矩形,我想将其更改为圆形。我该怎么做? var chart = c3.generate({ data: { columns: [
我需要显示带有圆 Angular 的图像。很久以前,我看到一个网站使用 javascript 库执行此操作,该库将圆 Angular 图像覆盖在普通图像上。 我们是否有任何 javascript 库(
在我的程序中,我使用 css 设计了我的按钮样式。我正在使用“-fx-background-radius”来圆 Angular ,并注意到当我将鼠标悬停在原来的 Angular 上时,它允许我单击按钮
我是一名优秀的程序员,十分优秀!