- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
有 100 个数字:
1, 1, 2, 2, 3, 3,.. 50, 50.
如何使用百位数字得到一个序列,其中两个 1 之间有一个数字,两个 2 之间有两个数字,两个 3 之间有三个数字,..两个 50 之间有五十个数字?
有没有人有比蛮力更好的主意?或者证明当 n = 50 时无解。
最佳答案
该问题称为 Langford Pairing .来自维基百科:
These sequences are named after C. Dudley Langford, who posed the problem of constructing them in 1958. As Knuth1 describes, the problem of listing ALL Langford pairings for a given
N
can be solved as an instance of the exact cover problem (one of Karp's 21 NP-complete problem), but for largeN
the number of solutions can be calculated more efficiently by algebraic methods.1: The Art of Computer Programming, IV, Fascicle 0: Introduction to Combinatorial Algorithms and Boolean Functions
值得注意的是N = 50
没有解决方案.解决方案仅适用于 N = 4k
或 N = 4k - 1
. Roy A. Davies 的论文(On Langford's Problem II, Math. Gaz. 43, 253-255, 1959)证明了这一点,该论文还给出了为任何可行的问题构建单一解决方案的模式N
.
以下是我的快速粗暴暴力程序能够为 N < 100
找到的一些解决方案.几乎所有这些都是在一秒钟内找到的。
3 [3, 1, 2, 1, 3, 2]
4 [4, 1, 3, 1, 2, 4, 3, 2]
7 [7, 3, 6, 2, 5, 3, 2, 4, 7, 6, 5, 1, 4, 1]
8 [8, 3, 7, 2, 6, 3, 2, 4, 5, 8, 7, 6, 4, 1, 5, 1]
11 [11, 6, 10, 2, 9, 3, 2, 8, 6, 3, 7, 5, 11, 10, 9, 4, 8, 5, 7, 1, 4, 1]
12 [12, 10, 11, 6, 4, 5, 9, 7, 8, 4, 6, 5, 10, 12, 11, 7, 9, 8, 3, 1, 2, 1, 3, 2]
15 [15, 13, 14, 8, 5, 12, 7, 11, 4, 10, 5, 9, 8, 4, 7, 13, 15, 14, 12, 11, 10, 9, 6, 3, 1, 2, 1, 3, 2, 6]
16 [16, 14, 15, 9, 7, 13, 3, 12, 6, 11, 3, 10, 7, 9, 8, 6, 14, 16, 15, 13, 12, 11, 10, 8, 5, 2, 4, 1, 2, 1, 5, 4]
19 [19, 17, 18, 14, 8, 16, 9, 15, 6, 1, 13, 1, 12, 8, 11, 6, 9, 10, 14, 17, 19, 18, 16, 15, 13, 12, 11, 7, 10, 3, 5, 2, 4, 3, 2, 7, 5, 4]
20 [20, 18, 19, 15, 11, 17, 10, 16, 9, 5, 14, 1, 13, 1, 12, 5, 11, 10, 9, 15, 18, 20, 19, 17, 16, 14, 13, 12, 8, 4, 7, 3, 6, 2, 4, 3, 2, 8, 7, 6]
23 [23, 21, 22, 18, 16, 20, 12, 19, 11, 8, 17, 4, 1, 15, 1, 14, 4, 13, 8, 12, 11, 16, 18, 21, 23, 22, 20, 19, 17, 15, 14, 13, 10, 7, 9, 3, 5, 2, 6, 3, 2, 7, 5, 10, 9, 6]
24 [24, 22, 23, 19, 17, 21, 13, 20, 10, 8, 18, 4, 1, 16, 1, 15, 4, 14, 8, 10, 13, 12, 17, 19, 22, 24, 23, 21, 20, 18, 16, 15, 14, 11, 12, 7, 9, 3, 5, 2, 6, 3, 2, 7, 5, 11, 9, 6]
27 [27, 25, 26, 22, 20, 24, 17, 23, 12, 13, 21, 7, 4, 19, 1, 18, 1, 4, 16, 7, 15, 12, 14, 13, 17, 20, 22, 25, 27, 26, 24, 23, 21, 19, 18, 16, 15, 14, 11, 9, 10, 5, 2, 8, 3, 2, 6, 5, 3, 9, 11, 10, 8, 6]
28 [28, 26, 27, 23, 21, 25, 18, 24, 15, 13, 22, 10, 6, 20, 1, 19, 1, 3, 17, 6, 16, 3, 10, 13, 15, 18, 21, 23, 26, 28, 27, 25, 24, 22, 20, 19, 17, 16, 14, 12, 9, 7, 11, 4, 2, 5, 8, 2, 4, 7, 9, 5, 12, 14, 11, 8]
31 [31, 29, 30, 26, 24, 28, 21, 27, 18, 16, 25, 13, 11, 23, 6, 22, 5, 1, 20, 1, 19, 6, 5, 17, 11, 13, 16, 18, 21, 24, 26, 29, 31, 30, 28, 27, 25, 23, 22, 20, 19, 17, 15, 12, 14, 9, 10, 2, 3, 4, 2, 8, 3, 7, 4, 9, 12, 10, 15, 14, 8, 7]
32 [32, 30, 31, 27, 25, 29, 22, 28, 19, 17, 26, 13, 11, 24, 6, 23, 5, 1, 21, 1, 20, 6, 5, 18, 11, 13, 16, 17, 19, 22, 25, 27, 30, 32, 31, 29, 28, 26, 24, 23, 21, 20, 18, 16, 15, 12, 14, 9, 10, 2, 3, 4, 2, 8, 3, 7, 4, 9, 12, 10, 15, 14, 8, 7]
35 [35, 33, 34, 30, 28, 32, 25, 31, 22, 20, 29, 17, 14, 27, 10, 26, 5, 6, 24, 1, 23, 1, 5, 21, 6, 10, 19, 14, 18, 17, 20, 22, 25, 28, 30, 33, 35, 34, 32, 31, 29, 27, 26, 24, 23, 21, 19, 18, 16, 13, 15, 12, 9, 4, 2, 11, 3, 2, 4, 8, 3, 7, 9, 13, 12, 16, 15, 11, 8, 7]
36 [36, 34, 35, 31, 29, 33, 26, 32, 23, 21, 30, 17, 14, 28, 10, 27, 5, 6, 25, 1, 24, 1, 5, 22, 6, 10, 20, 14, 19, 17, 18, 21, 23, 26, 29, 31, 34, 36, 35, 33, 32, 30, 28, 27, 25, 24, 22, 20, 19, 18, 16, 13, 15, 12, 9, 4, 2, 11, 3, 2, 4, 8, 3, 7, 9, 13, 12, 16, 15, 11, 8, 7]
40 [40, 38, 39, 35, 33, 37, 30, 36, 27, 25, 34, 22, 20, 32, 17, 31, 13, 11, 29, 7, 28, 3, 1, 26, 1, 3, 24, 7, 23, 11, 13, 21, 17, 20, 22, 25, 27, 30, 33, 35, 38, 40, 39, 37, 36, 34, 32, 31, 29, 28, 26, 24, 23, 21, 19, 16, 18, 15, 12, 4, 6, 14, 2, 5, 4, 2, 10, 6, 9, 5, 8, 12, 16, 15, 19, 18, 14, 10, 9, 8]
43 [43, 41, 42, 38, 36, 40, 33, 39, 30, 28, 37, 25, 23, 35, 20, 34, 16, 14, 32, 5, 31, 8, 6, 29, 2, 5, 27, 2, 26, 6, 8, 24, 14, 16, 22, 20, 23, 25, 28, 30, 33, 36, 38, 41, 43, 42, 40, 39, 37, 35, 34, 32, 31, 29, 27, 26, 24, 22, 21, 19, 17, 15, 18, 12, 7, 1, 3, 1, 13, 4, 3, 11, 7, 10, 4, 9, 12, 15, 17, 19, 21, 18, 13, 11, 10, 9]
44 [44, 42, 43, 39, 37, 41, 34, 40, 31, 29, 38, 26, 24, 36, 20, 35, 16, 14, 33, 5, 32, 8, 6, 30, 2, 5, 28, 2, 27, 6, 8, 25, 14, 16, 23, 20, 22, 24, 26, 29, 31, 34, 37, 39, 42, 44, 43, 41, 40, 38, 36, 35, 33, 32, 30, 28, 27, 25, 23, 22, 21, 19, 17, 15, 18, 12, 7, 1, 3, 1, 13, 4, 3, 11, 7, 10, 4, 9, 12, 15, 17, 19, 21, 18, 13, 11, 10, 9]
52 [52, 50, 51, 47, 45, 49, 42, 48, 39, 37, 46, 34, 32, 44, 29, 43, 26, 24, 41, 20, 40, 16, 14, 38, 7, 9, 36, 2, 35, 3, 2, 33, 7, 3, 31, 9, 30, 14, 16, 28, 20, 27, 24, 26, 29, 32, 34, 37, 39, 42, 45, 47, 50, 52, 51, 49, 48, 46, 44, 43, 41, 40, 38, 36, 35, 33, 31, 30, 28, 27, 25, 23, 21, 19, 22, 15, 8, 6, 1, 18, 1, 17, 4, 5, 6, 8, 13, 4, 12, 5, 11, 15, 10, 19, 21, 23, 25, 22, 18, 17, 13, 12, 11, 10]
55 [55, 53, 54, 50, 48, 52, 45, 51, 42, 40, 49, 37, 35, 47, 32, 46, 29, 27, 44, 23, 43, 20, 17, 41, 10, 11, 39, 4, 38, 8, 2, 36, 4, 2, 34, 10, 33, 11, 8, 31, 17, 30, 20, 23, 28, 27, 29, 32, 35, 37, 40, 42, 45, 48, 50, 53, 55, 54, 52, 51, 49, 47, 46, 44, 43, 41, 39, 38, 36, 34, 33, 31, 30, 28, 26, 24, 25, 21, 19, 16, 22, 9, 14, 6, 3, 18, 7, 5, 3, 15, 6, 9, 13, 5, 7, 12, 16, 14, 19, 21, 24, 26, 25, 22, 18, 15, 13, 1, 12, 1]
63 [63, 61, 62, 58, 56, 60, 53, 59, 50, 48, 57, 45, 43, 55, 40, 54, 37, 35, 52, 32, 51, 29, 27, 49, 23, 20, 47, 17, 46, 12, 9, 44, 10, 3, 42, 2, 41, 3, 2, 39, 9, 38, 12, 10, 36, 17, 20, 34, 23, 33, 27, 29, 32, 35, 37, 40, 43, 45, 48, 50, 53, 56, 58, 61, 63, 62, 60, 59, 57, 55, 54, 52, 51, 49, 47, 46, 44, 42, 41, 39, 38, 36, 34, 33, 31, 28, 30, 25, 26, 22, 19, 8, 18, 24, 11, 6, 4, 21, 5, 7, 8, 4, 6, 16, 5, 15, 11, 7, 13, 14, 19, 18, 22, 25, 28, 26, 31, 30, 24, 21, 16, 15, 13, 1, 14, 1]
64 [64, 62, 63, 59, 57, 61, 54, 60, 51, 49, 58, 46, 44, 56, 41, 55, 38, 36, 53, 33, 52, 29, 27, 50, 23, 20, 48, 17, 47, 12, 9, 45, 10, 3, 43, 2, 42, 3, 2, 40, 9, 39, 12, 10, 37, 17, 20, 35, 23, 34, 27, 29, 32, 33, 36, 38, 41, 44, 46, 49, 51, 54, 57, 59, 62, 64, 63, 61, 60, 58, 56, 55, 53, 52, 50, 48, 47, 45, 43, 42, 40, 39, 37, 35, 34, 32, 31, 28, 30, 25, 26, 22, 19, 8, 18, 24, 11, 6, 4, 21, 5, 7, 8, 4, 6, 16, 5, 15, 11, 7, 13, 14, 19, 18, 22, 25, 28, 26, 31, 30, 24, 21, 16, 15, 13, 1, 14, 1]
67 [67, 65, 66, 62, 60, 64, 57, 63, 54, 52, 61, 49, 47, 59, 44, 58, 41, 39, 56, 36, 55, 33, 30, 53, 26, 24, 51, 20, 50, 13, 11, 48, 12, 3, 46, 4, 45, 3, 7, 43, 4, 42, 11, 13, 40, 12, 7, 38, 20, 37, 24, 26, 35, 30, 34, 33, 36, 39, 41, 44, 47, 49, 52, 54, 57, 60, 62, 65, 67, 66, 64, 63, 61, 59, 58, 56, 55, 53, 51, 50, 48, 46, 45, 43, 42, 40, 38, 37, 35, 34, 32, 29, 31, 28, 25, 23, 21, 27, 18, 9, 10, 2, 5, 22, 2, 8, 6, 19, 5, 9, 17, 10, 16, 6, 8, 14, 15, 18, 21, 23, 25, 29, 28, 32, 31, 27, 22, 19, 17, 16, 14, 1, 15, 1]
72 [72, 70, 71, 67, 65, 69, 62, 68, 59, 57, 66, 54, 52, 64, 49, 63, 46, 44, 61, 41, 60, 38, 36, 58, 33, 30, 56, 27, 55, 23, 20, 53, 17, 14, 51, 10, 50, 5, 3, 48, 4, 47, 3, 5, 45, 4, 10, 43, 14, 42, 17, 20, 40, 23, 39, 27, 30, 37, 33, 36, 38, 41, 44, 46, 49, 52, 54, 57, 59, 62, 65, 67, 70, 72, 71, 69, 68, 66, 64, 63, 61, 60, 58, 56, 55, 53, 51, 50, 48, 47, 45, 43, 42, 40, 39, 37, 35, 32, 34, 31, 28, 26, 24, 22, 29, 15, 13, 8, 6, 25, 7, 12, 9, 11, 21, 6, 8, 19, 7, 18, 13, 15, 9, 16, 12, 11, 22, 24, 26, 28, 32, 31, 35, 34, 29, 25, 21, 19, 18, 2, 16, 1, 2, 1]
75 [75, 73, 74, 70, 68, 72, 65, 71, 62, 60, 69, 57, 55, 67, 52, 66, 49, 47, 64, 44, 63, 41, 39, 61, 36, 33, 59, 30, 58, 26, 24, 56, 20, 17, 54, 14, 53, 5, 6, 51, 7, 50, 3, 5, 48, 6, 3, 46, 7, 45, 14, 17, 43, 20, 42, 24, 26, 40, 30, 33, 38, 36, 39, 41, 44, 47, 49, 52, 55, 57, 60, 62, 65, 68, 70, 73, 75, 74, 72, 71, 69, 67, 66, 64, 63, 61, 59, 58, 56, 54, 53, 51, 50, 48, 46, 45, 43, 42, 40, 38, 37, 35, 32, 29, 34, 28, 25, 23, 31, 12, 15, 9, 11, 27, 21, 4, 13, 10, 8, 22, 4, 9, 12, 19, 11, 18, 15, 8, 10, 16, 13, 23, 25, 29, 28, 32, 21, 35, 37, 34, 31, 27, 22, 19, 18, 2, 16, 1, 2, 1]
76 [76, 74, 75, 71, 69, 73, 66, 72, 63, 61, 70, 58, 56, 68, 53, 67, 50, 48, 65, 45, 64, 42, 40, 62, 36, 33, 60, 30, 59, 26, 24, 57, 20, 17, 55, 14, 54, 5, 6, 52, 7, 51, 3, 5, 49, 6, 3, 47, 7, 46, 14, 17, 44, 20, 43, 24, 26, 41, 30, 33, 39, 36, 38, 40, 42, 45, 48, 50, 53, 56, 58, 61, 63, 66, 69, 71, 74, 76, 75, 73, 72, 70, 68, 67, 65, 64, 62, 60, 59, 57, 55, 54, 52, 51, 49, 47, 46, 44, 43, 41, 39, 38, 37, 35, 32, 29, 34, 28, 25, 23, 31, 12, 15, 9, 11, 27, 21, 4, 13, 10, 8, 22, 4, 9, 12, 19, 11, 18, 15, 8, 10, 16, 13, 23, 25, 29, 28, 32, 21, 35, 37, 34, 31, 27, 22, 19, 18, 2, 16, 1, 2, 1]
83 [83, 81, 82, 78, 76, 80, 73, 79, 70, 68, 77, 65, 63, 75, 60, 74, 57, 55, 72, 52, 71, 49, 47, 69, 44, 42, 67, 39, 66, 36, 33, 64, 30, 27, 62, 23, 61, 17, 14, 59, 15, 58, 7, 4, 56, 5, 11, 54, 4, 53, 7, 5, 51, 14, 50, 17, 15, 48, 11, 23, 46, 27, 45, 30, 33, 43, 36, 39, 42, 44, 47, 49, 52, 55, 57, 60, 63, 65, 68, 70, 73, 76, 78, 81, 83, 82, 80, 79, 77, 75, 74, 72, 71, 69, 67, 66, 64, 62, 61, 59, 58, 56, 54, 53, 51, 50, 48, 46, 45, 43, 41, 38, 40, 37, 34, 32, 29, 26, 35, 25, 16, 13, 24, 31, 8, 6, 3, 28, 12, 9, 3, 10, 6, 8, 22, 13, 21, 16, 20, 9, 19, 12, 10, 18, 26, 25, 29, 24, 32, 34, 38, 37, 41, 40, 35, 31, 28, 22, 21, 20, 19, 2, 18, 1, 2, 1]
84 [84, 82, 83, 79, 77, 81, 74, 80, 71, 69, 78, 66, 64, 76, 61, 75, 58, 56, 73, 53, 72, 50, 48, 70, 45, 43, 68, 39, 67, 36, 33, 65, 30, 27, 63, 23, 62, 17, 14, 60, 15, 59, 7, 4, 57, 5, 11, 55, 4, 54, 7, 5, 52, 14, 51, 17, 15, 49, 11, 23, 47, 27, 46, 30, 33, 44, 36, 39, 42, 43, 45, 48, 50, 53, 56, 58, 61, 64, 66, 69, 71, 74, 77, 79, 82, 84, 83, 81, 80, 78, 76, 75, 73, 72, 70, 68, 67, 65, 63, 62, 60, 59, 57, 55, 54, 52, 51, 49, 47, 46, 44, 42, 41, 38, 40, 37, 34, 32, 29, 26, 35, 25, 16, 13, 24, 31, 8, 6, 3, 28, 12, 9, 3, 10, 6, 8, 22, 13, 21, 16, 20, 9, 19, 12, 10, 18, 26, 25, 29, 24, 32, 34, 38, 37, 41, 40, 35, 31, 28, 22, 21, 20, 19, 2, 18, 1, 2, 1]
87 [87, 85, 86, 82, 80, 84, 77, 83, 74, 72, 81, 69, 67, 79, 64, 78, 61, 59, 76, 56, 75, 53, 51, 73, 48, 46, 71, 43, 70, 39, 36, 68, 33, 30, 66, 27, 65, 23, 17, 63, 14, 62, 16, 7, 60, 12, 3, 58, 4, 57, 3, 7, 55, 4, 54, 14, 17, 52, 12, 16, 50, 23, 49, 27, 30, 47, 33, 36, 45, 39, 44, 43, 46, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72, 74, 77, 80, 82, 85, 87, 86, 84, 83, 81, 79, 78, 76, 75, 73, 71, 70, 68, 66, 65, 63, 62, 60, 58, 57, 55, 54, 52, 50, 49, 47, 45, 44, 42, 40, 41, 37, 35, 32, 38, 31, 28, 26, 24, 34, 8, 15, 9, 11, 6, 29, 13, 5, 10, 8, 25, 6, 9, 5, 22, 11, 21, 15, 20, 10, 13, 18, 19, 24, 26, 28, 32, 31, 35, 37, 40, 42, 41, 38, 34, 29, 25, 22, 21, 20, 18, 2, 19, 1, 2, 1]
95 [95, 93, 94, 90, 88, 92, 85, 91, 82, 80, 89, 77, 75, 87, 72, 86, 69, 67, 84, 64, 83, 61, 59, 81, 56, 54, 79, 51, 78, 48, 46, 76, 43, 40, 74, 36, 73, 33, 30, 71, 26, 70, 18, 15, 68, 17, 9, 66, 6, 65, 13, 14, 63, 4, 62, 6, 9, 60, 4, 15, 58, 18, 57, 17, 13, 55, 14, 26, 53, 30, 52, 33, 36, 50, 40, 49, 43, 46, 48, 51, 54, 56, 59, 61, 64, 67, 69, 72, 75, 77, 80, 82, 85, 88, 90, 93, 95, 94, 92, 91, 89, 87, 86, 84, 83, 81, 79, 78, 76, 74, 73, 71, 70, 68, 66, 65, 63, 62, 60, 58, 57, 55, 53, 52, 50, 49, 47, 45, 42, 39, 44, 38, 35, 32, 41, 31, 28, 34, 25, 37, 16, 12, 7, 11, 8, 3, 5, 10, 29, 3, 7, 27, 5, 8, 12, 11, 24, 16, 10, 23, 19, 20, 21, 22, 25, 28, 32, 31, 35, 39, 38, 42, 34, 45, 47, 44, 41, 37, 29, 27, 19, 24, 20, 23, 21, 2, 22, 1, 2, 1]
96 [96, 94, 95, 91, 89, 93, 86, 92, 83, 81, 90, 78, 76, 88, 73, 87, 70, 68, 85, 65, 84, 62, 60, 82, 57, 55, 80, 52, 79, 49, 46, 77, 43, 40, 75, 36, 74, 33, 30, 72, 26, 71, 18, 15, 69, 17, 9, 67, 6, 66, 13, 14, 64, 4, 63, 6, 9, 61, 4, 15, 59, 18, 58, 17, 13, 56, 14, 26, 54, 30, 53, 33, 36, 51, 40, 50, 43, 46, 48, 49, 52, 55, 57, 60, 62, 65, 68, 70, 73, 76, 78, 81, 83, 86, 89, 91, 94, 96, 95, 93, 92, 90, 88, 87, 85, 84, 82, 80, 79, 77, 75, 74, 72, 71, 69, 67, 66, 64, 63, 61, 59, 58, 56, 54, 53, 51, 50, 48, 47, 45, 42, 39, 44, 38, 35, 32, 41, 31, 28, 34, 25, 37, 16, 12, 7, 11, 8, 3, 5, 10, 29, 3, 7, 27, 5, 8, 12, 11, 24, 16, 10, 23, 19, 20, 21, 22, 25, 28, 32, 31, 35, 39, 38, 42, 34, 45, 47, 44, 41, 37, 29, 27, 19, 24, 20, 23, 21, 2, 22, 1, 2, 1]
出于教学目的,这里是源代码:
import java.util.*;
public class LangfordPairing {
static void langford(int N) {
BitSet bs = new BitSet();
bs.set(N * 2);
put(bs, N, new int[2 * N]);
}
static void put(BitSet bs, int n, int[] arr) {
if (n == 0) {
System.out.println(Arrays.toString(arr));
System.exit(0); // one is enough!
}
for (int i = -1, L = bs.length() - n - 1;
(i = bs.nextClearBit(i + 1)) < L ;) {
final int j = i + n + 1;
if (!bs.get(j)) {
arr[i] = n;
arr[j] = n;
bs.flip(i);
bs.flip(j);
put(bs, n - 1, arr);
bs.flip(i);
bs.flip(j);
}
}
}
public static void main(String[] args) {
langford(87);
}
}
一些解决方案 N
缺少值;众所周知,它们需要异常大量的操作才能通过蛮力找到第一个解决方案。
请注意,如前所述,对于任何给定的 N
通常都有很多解决方案.对于 N = 7
, 有 26 个解:
[7, 3, 6, 2, 5, 3, 2, 4, 7, 6, 5, 1, 4, 1]
[7, 2, 6, 3, 2, 4, 5, 3, 7, 6, 4, 1, 5, 1]
[7, 2, 4, 6, 2, 3, 5, 4, 7, 3, 6, 1, 5, 1]
[7, 3, 1, 6, 1, 3, 4, 5, 7, 2, 6, 4, 2, 5]
[7, 1, 4, 1, 6, 3, 5, 4, 7, 3, 2, 6, 5, 2]
[7, 1, 3, 1, 6, 4, 3, 5, 7, 2, 4, 6, 2, 5]
[7, 4, 1, 5, 1, 6, 4, 3, 7, 5, 2, 3, 6, 2]
[7, 2, 4, 5, 2, 6, 3, 4, 7, 5, 3, 1, 6, 1]
[5, 7, 2, 6, 3, 2, 5, 4, 3, 7, 6, 1, 4, 1]
[3, 7, 4, 6, 3, 2, 5, 4, 2, 7, 6, 1, 5, 1]
[5, 7, 4, 1, 6, 1, 5, 4, 3, 7, 2, 6, 3, 2]
[5, 7, 2, 3, 6, 2, 5, 3, 4, 7, 1, 6, 1, 4]
[1, 7, 1, 2, 6, 4, 2, 5, 3, 7, 4, 6, 3, 5]
[5, 7, 1, 4, 1, 6, 5, 3, 4, 7, 2, 3, 6, 2]
[1, 7, 1, 2, 5, 6, 2, 3, 4, 7, 5, 3, 6, 4]
[2, 7, 4, 2, 3, 5, 6, 4, 3, 7, 1, 5, 1, 6]
[6, 2, 7, 4, 2, 3, 5, 6, 4, 3, 7, 1, 5, 1]
[2, 6, 7, 2, 1, 5, 1, 4, 6, 3, 7, 5, 4, 3]
[3, 6, 7, 1, 3, 1, 4, 5, 6, 2, 7, 4, 2, 5]
[5, 1, 7, 1, 6, 2, 5, 4, 2, 3, 7, 6, 4, 3]
[2, 3, 7, 2, 6, 3, 5, 1, 4, 1, 7, 6, 5, 4]
[4, 1, 7, 1, 6, 4, 2, 5, 3, 2, 7, 6, 3, 5]
[5, 2, 7, 3, 2, 6, 5, 3, 4, 1, 7, 1, 6, 4]
[3, 5, 7, 4, 3, 6, 2, 5, 4, 2, 7, 1, 6, 1]
[3, 5, 7, 2, 3, 6, 2, 5, 4, 1, 7, 1, 6, 4]
[2, 4, 7, 2, 3, 6, 4, 5, 3, 1, 7, 1, 6, 5]
N
values 关于algorithm - 如何获得这样的特定序列?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/3509304/
我在一本书(Interview Question)中读到这个问题,想在这里详细讨论这个问题。请点亮它。 问题如下:- 隐私和匿名化 马萨诸塞州集团保险委员会早在 1990 年代中期就有一个绝妙的主意
我最近接受了一次面试,面试官给了我一些伪代码并提出了相关问题。不幸的是,由于准备不足,我无法回答他的问题。由于时间关系,我无法向他请教该问题的解决方案。如果有人可以指导我并帮助我理解问题,以便我可以改
这是我的代码 public int getDist(Node root, int value) { if (root == null && value !=0) return
就效率而言,Strassen 算法应该停止递归并应用乘法的最佳交叉点是多少? 我知道这与具体的实现和硬件密切相关,但对于一般情况应该有某种指南或某人的一些实验结果。 在网上搜索了一下,问了一些他们认为
我想学习一些关于分布式算法的知识,所以我正在寻找任何书籍推荐。我对理论书籍更感兴趣,因为实现只是个人喜好问题(我可能会使用 erlang(或 c#))。但另一方面,我不想对算法进行原始的数学分析。只是
我想知道你们中有多少人实现了计算机科学的“ classical algorithms ”,例如 Dijkstra's algorithm或现实世界中的数据结构(例如二叉搜索树),而不是学术项目? 当有
我正在解决旧编程竞赛中的一些示例问题。在这个问题中,我们得到了我们有多少调酒师以及他们知道哪些食谱的信息。制作每杯鸡尾酒需要 1 分钟,我们需要使用所有调酒师计算是否可以在 5 分钟内完成订单。 解决
关闭。这个问题是opinion-based .它目前不接受答案。 想要改进这个问题? 更新问题,以便 editing this post 可以用事实和引用来回答它. 关闭 8 年前。 Improve
我开始学习 Nodejs,但我被困在中间的某个地方。我从 npm 安装了一个新库,它是 express -jwt ,它在运行后显示某种错误。附上代码和错误日志,请帮助我! const jwt = re
我有一个证书,其中签名算法显示“sha256rsa”,但指纹算法显示“sha1”。我的证书 SHA1/SHA2 的标识是什么? 谢谢! 最佳答案 TL;TR:签名和指纹是完全不同的东西。对于证书的强度
我目前在我的大学学习数据结构类(class),并且在之前的类(class)中做过一些算法分析,但这是我在之前的类(class)中遇到的最困难的部分。我们现在将在我的数据结构类(class)中学习算法分
有一个由 N 个 1x1 方格组成的区域,并且该区域的所有部分都是相连的(没有任何方格无法到达的方格)。 下面是一些面积的例子。 我想在这个区域中选择一些方块,并且两个相邻的方块不能一起选择(对角接触
我有一些多边形形状的点列表,我想将其包含在我页面上的 Google map 中。 我已经从原始数据中删除了尽可能多的不必要的多边形,现在我剩下大约 12 个,但它们非常详细以至于导致了问题。现在我的文
我目前正在实现 Marching Squares用于计算等高线曲线,我对此处提到的位移位的使用有疑问 Compose the 4 bits at the corners of the cell to
我正在尝试针对给定算法的约束满足问题实现此递归回溯函数: function BACKTRACKING-SEARCH(csp) returns solution/failure return R
是否有包含反函数的库? 作为项目的一部分,我目前正在研究测向算法。我正在使用巴特利特相关性。在 Bartlett 相关性中,我需要将已经是 3 次矩阵乘法(包括 Hermitian 转置)的分子除以作
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 这个问题似乎与 help center 中定义的范围内的编程无关。 . 关闭 8 年前。 Improve
问题的链接是UVA - 1394 : And There Was One . 朴素的算法是扫描整个数组并在每次迭代中标记第 k 个元素并在最后停止:这需要 O(n^2) 时间。 我搜索了一种替代算法并
COM 中创建 GUID 的函数 (CoCreateGUID) 使用“分散唯一性算法”,但我的问题是,它是什么? 谁能解释一下? 最佳答案 一种生成 ID 的方法,该 ID 具有一定的唯一性保证,而不
在做一个项目时我遇到了这个问题,我将在这个问题的实际领域之外重新措辞(我想我可以谈论烟花的口径和形状,但这会使理解更加复杂).我正在寻找一种(可能是近似的)算法来解决它。 我有 n 个不同大小的容器,
我是一名优秀的程序员,十分优秀!