- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
最近,我的问题被标记为重复的,比如this,即使没有。所以,让我从下面开始,然后我将解释我的问题。
为什么这个问题不是重复的?
我不想问如何创建一个二叉树时,顺序和前序遍历给出。我要求证明,inorder+preorder遍历定义了一个唯一的二叉树。
现在,回到最初的问题。我去面试,面试官问我这个问题。我被卡住了,无法继续。:。|
问题:给定二叉树的顺序遍历和顺序遍历。证明给定的数据只有一棵二叉树。换句话说,证明两个不同的二叉树不能有相同的序遍历和序遍历。假设树中的所有元素都是唯一的(感谢@envy_intelligence指出了这个假设)。
我试着用例子说服面试官,但面试官要求提供数学/直观的证据。有人能帮我证明吗?
最佳答案
从预排序遍历开始。要么它是空的,在这种情况下就完成了,要么它有第一个元素r0
,即树的根。现在搜索顺序遍历以查找r0
。左子树都会在该点之前出现,右子树都会在该点之后出现。因此,您可以将该点的顺序遍历分为左子树的顺序遍历il
和右子树的顺序遍历ir
。
如果il
为空,那么剩余的前序遍历属于右子树,您可以继续归纳。如果ir
为空,则另一侧也会发生相同的情况。如果两者都不为空,则在预序遍历的剩余部分中找到ir
的第一个元素。这将它分为左子树和右子树的一个按序遍历。入职是立即的。
如果有人对一个正式的证明感兴趣,我已经(最后)设法用idris制作了一个。然而,我并没有花时间努力使它可读性很强,所以实际上很难阅读其中的大部分内容。我建议您主要关注顶级类型(即引理、定理和定义),并尽量避免陷入证明(术语)的泥潭。
首先是一些准备工作:
module PreIn
import Data.List
%default total
data Tree : Type -> Type where
Tip : Tree a
Node : (l : Tree a) -> (v : a) -> (r : Tree a) -> Tree a
%name Tree t, u
Elem
输入
Data.List
,它表示在特定列表中查找特定元素的方法。
data InTree : a -> Tree a -> Type where
AtRoot : x `InTree` (Node l x r)
OnLeft : x `InTree` l -> x `InTree` (Node l v r)
OnRight : x `InTree` r -> x `InTree` (Node l v r)
size : Tree a -> Nat
size Tip = Z
size (Node l v r) = size l + (S Z + size r)
onLeftInjective : OnLeft p = OnLeft q -> p = q
onLeftInjective Refl = Refl
onRightInjective : OnRight p = OnRight q -> p = q
onRightInjective Refl = Refl
inorder : Tree a -> List a
inorder Tip = []
inorder (Node l v r) = inorder l ++ [v] ++ inorder r
instance Uninhabited (Here = There y) where
uninhabited Refl impossible
instance Uninhabited (x `InTree` Tip) where
uninhabited AtRoot impossible
elemAppend : {x : a} -> (ys,xs : List a) -> x `Elem` xs -> x `Elem` (ys ++ xs)
elemAppend [] xs xInxs = xInxs
elemAppend (y :: ys) xs xInxs = There (elemAppend ys xs xInxs)
appendElem : {x : a} -> (xs,ys : List a) -> x `Elem` xs -> x `Elem` (xs ++ ys)
appendElem (x :: zs) ys Here = Here
appendElem (y :: zs) ys (There pr) = There (appendElem zs ys pr)
tThenInorder : {x : a} -> (t : Tree a) -> x `InTree` t -> x `Elem` inorder t
tThenInorder (Node l x r) AtRoot = elemAppend _ _ Here
tThenInorder (Node l v r) (OnLeft pr) = appendElem _ _ (tThenInorder _ pr)
tThenInorder (Node l v r) (OnRight pr) = elemAppend _ _ (There (tThenInorder _ pr))
listSplit_lem : (x,z : a) -> (xs,ys:List a) -> Either (x `Elem` xs) (x `Elem` ys)
-> Either (x `Elem` (z :: xs)) (x `Elem` ys)
listSplit_lem x z xs ys (Left prf) = Left (There prf)
listSplit_lem x z xs ys (Right prf) = Right prf
listSplit : {x : a} -> (xs,ys : List a) -> x `Elem` (xs ++ ys) -> Either (x `Elem` xs) (x `Elem` ys)
listSplit [] ys xelem = Right xelem
listSplit (z :: xs) ys Here = Left Here
listSplit {x} (z :: xs) ys (There pr) = listSplit_lem x z xs ys (listSplit xs ys pr)
mutual
inorderThenT : {x : a} -> (t : Tree a) -> x `Elem` inorder t -> InTree x t
inorderThenT Tip xInL = absurd xInL
inorderThenT {x} (Node l v r) xInL = inorderThenT_lem x l v r xInL (listSplit (inorder l) (v :: inorder r) xInL)
inorderThenT_lem : (x : a) ->
(l : Tree a) -> (v : a) -> (r : Tree a) ->
x `Elem` inorder (Node l v r) ->
Either (x `Elem` inorder l) (x `Elem` (v :: inorder r)) ->
InTree x (Node l v r)
inorderThenT_lem x l v r xInL (Left locl) = OnLeft (inorderThenT l locl)
inorderThenT_lem x l x r xInL (Right Here) = AtRoot
inorderThenT_lem x l v r xInL (Right (There locr)) = OnRight (inorderThenT r locr)
unsplitRight : {x : a} -> (e : x `Elem` ys) -> listSplit xs ys (elemAppend xs ys e) = Right e
unsplitRight {xs = []} e = Refl
unsplitRight {xs = (x :: xs)} e = rewrite unsplitRight {xs} e in Refl
unsplitLeft : {x : a} -> (e : x `Elem` xs) -> listSplit xs ys (appendElem xs ys e) = Left e
unsplitLeft {xs = []} Here impossible
unsplitLeft {xs = (x :: xs)} Here = Refl
unsplitLeft {xs = (x :: xs)} {ys} (There pr) =
rewrite unsplitLeft {xs} {ys} pr in Refl
splitLeft_lem1 : (Left (There w) = listSplit_lem x y xs ys (listSplit xs ys z)) ->
(Left w = listSplit xs ys z)
splitLeft_lem1 {w} {xs} {ys} {z} prf with (listSplit xs ys z)
splitLeft_lem1 {w} Refl | (Left w) = Refl
splitLeft_lem1 {w} Refl | (Right s) impossible
splitLeft_lem2 : Left Here = listSplit_lem x x xs ys (listSplit xs ys z) -> Void
splitLeft_lem2 {x} {xs} {ys} {z} prf with (listSplit xs ys z)
splitLeft_lem2 {x = x} {xs = xs} {ys = ys} {z = z} Refl | (Left y) impossible
splitLeft_lem2 {x = x} {xs = xs} {ys = ys} {z = z} Refl | (Right y) impossible
splitLeft : {x : a} -> (xs,ys : List a) ->
(loc : x `Elem` (xs ++ ys)) ->
Left e = listSplit {x} xs ys loc ->
appendElem {x} xs ys e = loc
splitLeft {e} [] ys loc prf = absurd e
splitLeft (x :: xs) ys Here prf = rewrite leftInjective prf in Refl
splitLeft {e = Here} (x :: xs) ys (There z) prf = absurd (splitLeft_lem2 prf)
splitLeft {e = (There w)} (y :: xs) ys (There z) prf =
cong $ splitLeft xs ys z (splitLeft_lem1 prf)
splitMiddle_lem3 : Right Here = listSplit_lem y x xs (y :: ys) (listSplit xs (y :: ys) z) ->
Right Here = listSplit xs (y :: ys) z
splitMiddle_lem3 {y} {x} {xs} {ys} {z} prf with (listSplit xs (y :: ys) z)
splitMiddle_lem3 {y = y} {x = x} {xs = xs} {ys = ys} {z = z} Refl | (Left w) impossible
splitMiddle_lem3 {y = y} {x = x} {xs = xs} {ys = ys} {z = z} prf | (Right w) =
cong $ rightInjective prf -- This funny dance strips the Rights off and then puts them
-- back on so as to change type.
splitMiddle_lem2 : Right Here = listSplit xs (y :: ys) pl ->
elemAppend xs (y :: ys) Here = pl
splitMiddle_lem2 {xs} {y} {ys} {pl} prf with (listSplit xs (y :: ys) pl) proof prpr
splitMiddle_lem2 {xs = xs} {y = y} {ys = ys} {pl = pl} Refl | (Left loc) impossible
splitMiddle_lem2 {xs = []} {y = y} {ys = ys} {pl = pl} Refl | (Right Here) = rightInjective prpr
splitMiddle_lem2 {xs = (x :: xs)} {y = x} {ys = ys} {pl = Here} prf | (Right Here) = (\Refl impossible) prpr
splitMiddle_lem2 {xs = (x :: xs)} {y = y} {ys = ys} {pl = (There z)} prf | (Right Here) =
cong $ splitMiddle_lem2 {xs} {y} {ys} {pl = z} (splitMiddle_lem3 prpr)
splitMiddle_lem1 : Right Here = listSplit_lem y x xs (y :: ys) (listSplit xs (y :: ys) pl) ->
elemAppend xs (y :: ys) Here = pl
splitMiddle_lem1 {y} {x} {xs} {ys} {pl} prf with (listSplit xs (y :: ys) pl) proof prpr
splitMiddle_lem1 {y = y} {x = x} {xs = xs} {ys = ys} {pl = pl} Refl | (Left z) impossible
splitMiddle_lem1 {y = y} {x = x} {xs = xs} {ys = ys} {pl = pl} Refl | (Right Here) = splitMiddle_lem2 prpr
splitMiddle : Right Here = listSplit xs (y::ys) loc ->
elemAppend xs (y::ys) Here = loc
splitMiddle {xs = []} prf = rightInjective prf
splitMiddle {xs = (x :: xs)} {loc = Here} Refl impossible
splitMiddle {xs = (x :: xs)} {loc = (There y)} prf = cong $ splitMiddle_lem1 prf
splitRight_lem1 : Right (There pl) = listSplit (q :: xs) (y :: ys) (There z) ->
Right (There pl) = listSplit xs (y :: ys) z
splitRight_lem1 {xs} {ys} {y} {z} prf with (listSplit xs (y :: ys) z)
splitRight_lem1 {xs = xs} {ys = ys} {y = y} {z = z} Refl | (Left x) impossible
splitRight_lem1 {xs = xs} {ys = ys} {y = y} {z = z} prf | (Right x) =
cong $ rightInjective prf -- Type dance: take the Right off and put it back on.
splitRight : Right (There pl) = listSplit xs (y :: ys) loc ->
elemAppend xs (y :: ys) (There pl) = loc
splitRight {pl = pl} {xs = []} {y = y} {ys = ys} {loc = loc} prf = rightInjective prf
splitRight {pl = pl} {xs = (x :: xs)} {y = y} {ys = ys} {loc = Here} Refl impossible
splitRight {pl = pl} {xs = (x :: xs)} {y = y} {ys = ys} {loc = (There z)} prf =
let rec = splitRight {pl} {xs} {y} {ys} {loc = z} in cong $ rec (splitRight_lem1 prf)
---------------------------
-- tThenInorder is a bijection from ways to find a particular element in a tree
-- and ways to find that element in its inorder traversal. `inorderToFro`
-- and `inorderFroTo` together demonstrate this by showing that `inorderThenT` is
-- its inverse.
||| `tThenInorder t` is a retraction of `inorderThenT t`
inorderFroTo : {x : a} -> (t : Tree a) -> (loc : x `Elem` inorder t) -> tThenInorder t (inorderThenT t loc) = loc
inorderFroTo Tip loc = absurd loc
inorderFroTo (Node l v r) loc with (listSplit (inorder l) (v :: inorder r) loc) proof prf
inorderFroTo (Node l v r) loc | (Left here) =
rewrite inorderFroTo l here in splitLeft _ _ loc prf
inorderFroTo (Node l v r) loc | (Right Here) = splitMiddle prf
inorderFroTo (Node l v r) loc | (Right (There x)) =
rewrite inorderFroTo r x in splitRight prf
||| `inorderThenT t` is a retraction of `tThenInorder t`
inorderToFro : {x : a} -> (t : Tree a) -> (loc : x `InTree` t) -> inorderThenT t (tThenInorder t loc) = loc
inorderToFro (Node l v r) (OnLeft xInL) =
rewrite unsplitLeft {ys = v :: inorder r} (tThenInorder l xInL)
in cong $ inorderToFro _ xInL
inorderToFro (Node l x r) AtRoot =
rewrite unsplitRight {x} {xs = inorder l} {ys = x :: inorder r} (tThenInorder (Node Tip x r) AtRoot)
in Refl
inorderToFro {x} (Node l v r) (OnRight xInR) =
rewrite unsplitRight {x} {xs = inorder l} {ys = v :: inorder r} (tThenInorder (Node Tip v r) (OnRight xInR))
in cong $ inorderToFro _ xInR
preorder : Tree a -> List a
preorder Tip = []
preorder (Node l v r) = v :: (preorder l ++ preorder r)
tThenPreorder : (t : Tree a) -> x `InTree` t -> x `Elem` preorder t
tThenPreorder Tip AtRoot impossible
tThenPreorder (Node l x r) AtRoot = Here
tThenPreorder (Node l v r) (OnLeft loc) = appendElem _ _ (There (tThenPreorder _ loc))
tThenPreorder (Node l v r) (OnRight loc) = elemAppend (v :: preorder l) (preorder r) (tThenPreorder _ loc)
mutual
preorderThenT : (t : Tree a) -> x `Elem` preorder t -> x `InTree` t
preorderThenT {x = x} (Node l x r) Here = AtRoot
preorderThenT {x = x} (Node l v r) (There y) = preorderThenT_lem (listSplit _ _ y)
preorderThenT_lem : Either (x `Elem` preorder l) (x `Elem` preorder r) -> x `InTree` (Node l v r)
preorderThenT_lem {x = x} {l = l} {v = v} {r = r} (Left lloc) = OnLeft (preorderThenT l lloc)
preorderThenT_lem {x = x} {l = l} {v = v} {r = r} (Right rloc) = OnRight (preorderThenT r rloc)
splitty : Right pl = listSplit xs ys loc -> elemAppend xs ys pl = loc
splitty {pl = Here} {xs = xs} {ys = (x :: zs)} {loc = loc} prf = splitMiddle prf
splitty {pl = (There x)} {xs = xs} {ys = (y :: zs)} {loc = loc} prf = splitRight prf
preorderFroTo : {x : a} -> (t : Tree a) -> (loc : x `Elem` preorder t) ->
tThenPreorder t (preorderThenT t loc) = loc
preorderFroTo Tip Here impossible
preorderFroTo (Node l x r) Here = Refl
preorderFroTo (Node l v r) (There loc) with (listSplit (preorder l) (preorder r) loc) proof spl
preorderFroTo (Node l v r) (There loc) | (Left pl) =
rewrite sym (splitLeft {e=pl} (preorder l) (preorder r) loc spl)
in cong {f = There} $ cong {f = appendElem (preorder l) (preorder r)} (preorderFroTo _ _)
preorderFroTo (Node l v r) (There loc) | (Right pl) =
rewrite preorderFroTo r pl in cong {f = There} (splitty spl)
preorderToFro : {x : a} -> (t : Tree a) -> (loc : x `InTree` t) -> preorderThenT t (tThenPreorder t loc) = loc
preorderToFro (Node l x r) AtRoot = Refl
preorderToFro (Node l v r) (OnLeft loc) =
rewrite unsplitLeft {ys = preorder r} (tThenPreorder l loc)
in cong {f = OnLeft} (preorderToFro l loc)
preorderToFro (Node l v r) (OnRight loc) =
rewrite unsplitRight {xs = preorder l} (tThenPreorder r loc)
in cong {f = OnRight} (preorderToFro r loc)
t
和
loc1
是在
loc1
中找到值的方法时,
x
必须等于
t
。
InjTree : Tree a -> Type
InjTree t = (x : a) -> (loc1, loc2 : x `InTree` t) -> loc1 = loc2
InjList : List a -> Type
InjList xs = (x : a) -> (loc1, loc2 : x `Elem` xs) -> loc1 = loc2
||| If a tree is injective, so is its preorder traversal
treePreInj : (t : Tree a) -> InjTree t -> InjList (preorder t)
treePreInj {a} t it x loc1 loc2 =
let foo = preorderThenT {a} {x} t loc1
bar = preorderThenT {a} {x} t loc2
baz = it x foo bar
in rewrite sym $ preorderFroTo t loc1
in rewrite sym $ preorderFroTo t loc2
in cong baz
||| If a tree is injective, so is its inorder traversal
treeInInj : (t : Tree a) -> InjTree t -> InjList (inorder t)
treeInInj {a} t it x loc1 loc2 =
let foo = inorderThenT {a} {x} t loc1
bar = inorderThenT {a} {x} t loc2
baz = it x foo bar
in rewrite sym $ inorderFroTo t loc1
in rewrite sym $ inorderFroTo t loc2
in cong baz
||| If a tree's preorder traversal is injective, so is the tree.
injPreTree : (t : Tree a) -> InjList (preorder t) -> InjTree t
injPreTree {a} t il x loc1 loc2 =
let
foo = tThenPreorder {a} {x} t loc1
bar = tThenPreorder {a} {x} t loc2
baz = il x foo bar
in rewrite sym $ preorderToFro t loc1
in rewrite sym $ preorderToFro t loc2
in cong baz
||| If a tree's inorder traversal is injective, so is the tree.
injInTree : (t : Tree a) -> InjList (inorder t) -> InjTree t
injInTree {a} t il x loc1 loc2 =
let
foo = tThenInorder {a} {x} t loc1
bar = tThenInorder {a} {x} t loc2
baz = il x foo bar
in rewrite sym $ inorderToFro t loc1
in rewrite sym $ inorderToFro t loc2
in cong baz
headsSame : {x:a} -> {xs : List a} -> {y : a} -> {ys : List a} -> (x :: xs) = (y :: ys) -> x = y
headsSame Refl = Refl
tailsSame : {x:a} -> {xs : List a} -> {y : a} -> {ys : List a} -> (x :: xs) = (y :: ys) -> xs = ys
tailsSame Refl = Refl
appendLeftCancel : {xs,ys,ys' : List a} -> xs ++ ys = xs ++ ys' -> ys = ys'
appendLeftCancel {xs = []} prf = prf
appendLeftCancel {xs = (x :: xs)} prf = appendLeftCancel {xs} (tailsSame prf)
lengthDrop : (xs,ys : List a) -> drop (length xs) (xs ++ ys) = ys
lengthDrop [] ys = Refl
lengthDrop (x :: xs) ys = lengthDrop xs ys
lengthTake : (xs,ys : List a) -> take (length xs) (xs ++ ys) = xs
lengthTake [] ys = Refl
lengthTake (x :: xs) ys = cong $ lengthTake xs ys
appendRightCancel_lem : (xs,xs',ys : List a) -> xs ++ ys = xs' ++ ys -> length xs = length xs'
appendRightCancel_lem xs xs' ys eq =
let foo = lengthAppend xs ys
bar = replace {P = \b => length b = length xs + length ys} eq foo
baz = trans (sym bar) $ lengthAppend xs' ys
in plusRightCancel (length xs) (length xs') (length ys) baz
appendRightCancel : {xs,xs',ys : List a} -> xs ++ ys = xs' ++ ys -> xs = xs'
appendRightCancel {xs} {xs'} {ys} eq with (appendRightCancel_lem xs xs' ys eq)
| lenEq = rewrite sym $ lengthTake xs ys
in let foo : (take (length xs') (xs ++ ys) = xs') = rewrite eq in lengthTake xs' ys
in rewrite lenEq in foo
listPartsEqLeft : {xs, xs', ys, ys' : List a} ->
length xs = length xs' ->
xs ++ ys = xs' ++ ys' ->
xs = xs'
listPartsEqLeft {xs} {xs'} {ys} {ys'} leneq appeq =
rewrite sym $ lengthTake xs ys
in rewrite leneq
in rewrite appeq
in lengthTake xs' ys'
listPartsEqRight : {xs, xs', ys, ys' : List a} ->
length xs = length xs' ->
xs ++ ys = xs' ++ ys' ->
ys = ys'
listPartsEqRight leneq appeq with (listPartsEqLeft leneq appeq)
listPartsEqRight leneq appeq | Refl = appendLeftCancel appeq
thereInjective : There loc1 = There loc2 -> loc1 = loc2
thereInjective Refl = Refl
injTail : InjList (x :: xs) -> InjList xs
injTail {x} {xs} xxsInj v vloc1 vloc2 = thereInjective $
xxsInj v (There vloc1) (There vloc2)
splitInorder_lem2 : ((loc1 : Elem v (v :: xs ++ v :: ysr)) ->
(loc2 : Elem v (v :: xs ++ v :: ysr)) -> loc1 = loc2) ->
Void
splitInorder_lem2 {v} {xs} {ysr} f =
let
loc2 = elemAppend {x=v} xs (v :: ysr) Here
in (\Refl impossible) $ f Here (There loc2)
-- preorderLength and inorderLength could be proven using the bijections
-- between trees and their traversals, but it's much easier to just prove
-- them directly.
preorderLength : (t : Tree a) -> length (preorder t) = size t
preorderLength Tip = Refl
preorderLength (Node l v r) =
rewrite sym (plusSuccRightSucc (size l) (size r))
in cong {f=S} $
rewrite sym $ preorderLength l
in rewrite sym $ preorderLength r
in lengthAppend _ _
inorderLength : (t : Tree a) -> length (inorder t) = size t
inorderLength Tip = Refl
inorderLength (Node l v r) =
rewrite lengthAppend (inorder l) (v :: inorder r)
in rewrite inorderLength l
in rewrite inorderLength r in Refl
preInLength : (t : Tree a) -> length (preorder t) = length (inorder t)
preInLength t = trans (preorderLength t) (sym $ inorderLength t)
splitInorder_lem1 : (v : a) ->
(xsl, xsr, ysl, ysr : List a) ->
(xsInj : InjList (xsl ++ v :: xsr)) ->
(ysInj : InjList (ysl ++ v :: ysr)) ->
xsl ++ v :: xsr = ysl ++ v :: ysr ->
v `Elem` (xsl ++ v :: xsr) ->
v `Elem` (ysl ++ v :: ysr) ->
xsl = ysl
splitInorder_lem1 v [] xsr [] ysr xsInj ysInj eq locxs locys = Refl
splitInorder_lem1 v [] xsr (v :: ysl) ysr xsInj ysInj eq Here Here with (ysInj v Here (elemAppend (v :: ysl) (v :: ysr) Here))
splitInorder_lem1 v [] xsr (v :: ysl) ysr xsInj ysInj eq Here Here | Refl impossible
splitInorder_lem1 v [] xsr (y :: ysl) ysr xsInj ysInj eq Here (There loc) with (headsSame eq)
splitInorder_lem1 v [] xsr (v :: ysl) ysr xsInj ysInj eq Here (There loc) | Refl = absurd $ splitInorder_lem2 (ysInj v)
splitInorder_lem1 v [] xsr (x :: xs) ysr xsInj ysInj eq (There loc) locys with (headsSame eq)
splitInorder_lem1 v [] xsr (v :: xs) ysr xsInj ysInj eq (There loc) locys | Refl = absurd $ splitInorder_lem2 (ysInj v)
splitInorder_lem1 v (v :: xs) xsr ysl ysr xsInj ysInj eq Here locys = absurd $ splitInorder_lem2 (xsInj v)
splitInorder_lem1 v (x :: xs) xsr [] ysr xsInj ysInj eq (There y) locys with (headsSame eq)
splitInorder_lem1 v (v :: xs) xsr [] ysr xsInj ysInj eq (There y) locys | Refl = absurd $ splitInorder_lem2 (xsInj v)
splitInorder_lem1 v (x :: xs) xsr (z :: ys) ysr xsInj ysInj eq (There y) locys with (headsSame eq)
splitInorder_lem1 v (v :: xs) xsr (_ :: ys) ysr xsInj ysInj eq (There y) Here | Refl = absurd $ splitInorder_lem2 (ysInj v)
splitInorder_lem1 v (x :: xs) xsr (x :: ys) ysr xsInj ysInj eq (There y) (There z) | Refl = cong {f = ((::) x)} $
splitInorder_lem1 v xs xsr ys ysr (injTail xsInj) (injTail ysInj) (tailsSame eq) y z
splitInorder_lem3 : (v : a) ->
(xsl, xsr, ysl, ysr : List a) ->
(xsInj : InjList (xsl ++ v :: xsr)) ->
(ysInj : InjList (ysl ++ v :: ysr)) ->
xsl ++ v :: xsr = ysl ++ v :: ysr ->
v `Elem` (xsl ++ v :: xsr) ->
v `Elem` (ysl ++ v :: ysr) ->
xsr = ysr
splitInorder_lem3 v xsl xsr ysl ysr xsInj ysInj prf locxs locys with (splitInorder_lem1 v xsl xsr ysl ysr xsInj ysInj prf locxs locys)
splitInorder_lem3 v xsl xsr xsl ysr xsInj ysInj prf locxs locys | Refl =
tailsSame $ appendLeftCancel prf
injLeft : {l : Tree a} -> {v : a} -> {r : Tree a} ->
InjTree (Node l v r) -> InjTree l
injLeft {l} {v} {r} injlvr x loc1 loc2 with (injlvr x (OnLeft loc1) (OnLeft loc2))
injLeft {l = l} {v = v} {r = r} injlvr x loc1 loc1 | Refl = Refl
injRight : {l : Tree a} -> {v : a} -> {r : Tree a} ->
InjTree (Node l v r) -> InjTree r
injRight {l} {v} {r} injlvr x loc1 loc2 with (injlvr x (OnRight loc1) (OnRight loc2))
injRight {l} {v} {r} injlvr x loc1 loc1 | Refl = Refl
loc1
和
loc2
是二叉树,
t
是内射的,
u
和
t
具有相同的前序和序遍历,则
t
和
u
是相等的。
travsDet : (t, u : Tree a) -> InjTree t -> preorder t = preorder u -> inorder t = inorder u -> t = u
-- The base case--both trees are empty
travsDet Tip Tip x prf prf1 = Refl
-- Impossible cases: only one tree is empty
travsDet Tip (Node l v r) x Refl prf1 impossible
travsDet (Node l v r) Tip x Refl prf1 impossible
-- The interesting case. `headsSame presame` proves
-- that the roots of the trees are equal.
travsDet (Node l v r) (Node t y u) lvrInj presame insame with (headsSame presame)
travsDet (Node l v r) (Node t v u) lvrInj presame insame | Refl =
let
foo = elemAppend (inorder l) (v :: inorder r) Here
bar = elemAppend (inorder t) (v :: inorder u) Here
inlvrInj = treeInInj _ lvrInj
intvuInj : (InjList (inorder (Node t v u))) = rewrite sym insame in inlvrInj
inorderRightSame = splitInorder_lem3 v (inorder l) (inorder r) (inorder t) (inorder u) inlvrInj intvuInj insame foo bar
preInL : (length (preorder l) = length (inorder l)) = preInLength l
inorderLeftSame = splitInorder_lem1 v (inorder l) (inorder r) (inorder t) (inorder u) inlvrInj intvuInj insame foo bar
inPreT : (length (inorder t) = length (preorder t)) = sym $ preInLength t
preLenlt : (length (preorder l) = length (preorder t))
= trans preInL (trans (cong inorderLeftSame) inPreT)
presame' = tailsSame presame
baz : (preorder l = preorder t) = listPartsEqLeft preLenlt presame'
quux : (preorder r = preorder u) = listPartsEqRight preLenlt presame'
-- Putting together the lemmas, we see that the
-- left and right subtrees are equal
recleft = travsDet l t (injLeft lvrInj) baz inorderLeftSame
recright = travsDet r u (injRight lvrInj) quux inorderRightSame
in rewrite recleft in rewrite recright in Refl
t
类型来表示。
NoDups : Tree a -> Type
NoDups {a} t = (x, y : a) ->
(loc1 : x `InTree` t) ->
(loc2 : y `InTree` t) ->
Not (loc1 = loc2) ->
Not (x = y)
instance DecEq (x `InTree` t) where
decEq AtRoot AtRoot = Yes Refl
decEq AtRoot (OnLeft x) = No (\Refl impossible)
decEq AtRoot (OnRight x) = No (\Refl impossible)
decEq (OnLeft x) AtRoot = No (\Refl impossible)
decEq (OnLeft x) (OnLeft y) with (decEq x y)
decEq (OnLeft x) (OnLeft x) | (Yes Refl) = Yes Refl
decEq (OnLeft x) (OnLeft y) | (No contra) = No (contra . onLeftInjective)
decEq (OnLeft x) (OnRight y) = No (\Refl impossible)
decEq (OnRight x) AtRoot = No (\Refl impossible)
decEq (OnRight x) (OnLeft y) = No (\Refl impossible)
decEq (OnRight x) (OnRight y) with (decEq x y)
decEq (OnRight x) (OnRight x) | (Yes Refl) = Yes Refl
decEq (OnRight x) (OnRight y) | (No contra) = No (contra . onRightInjective)
u
意味着
NoDups
:
noDupsInj : (t : Tree a) -> NoDups t -> InjTree t
noDupsInj t nd x loc1 loc2 with (decEq loc1 loc2)
noDupsInj t nd x loc1 loc2 | (Yes prf) = prf
noDupsInj t nd x loc1 loc2 | (No contra) = absurd $ nd x x loc1 loc2 contra Refl
Nodups t
就完成了任务。
travsDet2 : (t, u : Tree a) -> NoDups t -> preorder t = preorder u -> inorder t = inorder u -> t = u
travsDet2 t u ndt = travsDet t u (noDupsInj t ndt)
关于algorithm - inorder + preorder如何构造唯一的二叉树?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/30556590/
谁能解释一下原因: (define a (lambda() (cons a #f))) (car (a)) ==> procedure ((car (a))) ==> (procedure . #f)
这是 PyBrain 网站的摘录。我了解大部分正在发生的事情,但是一行让我完全难住了。我以前从未在 python 代码中看到过这样的东西。这是整个循环,对于上下文: for c in [0,
我是gradle / groovy的新手。我想创建将做一些事情的自定义任务。我的第一个问题是任务完成时该如何做?我可以覆盖doFirst / doLast闭包吗?也许我可以重写某些在开始和结束时都会执
我刚刚开始评估 MS 企业库。他们使用以下指令来获取实例: var customerDb = EnterpriseLibraryContainer.Current.GetInstance("C
这是我的 if else Ansible 逻辑.. - name: Check certs exist stat: path=/etc/letsencrypt/live/{{ rootDomain
我正在使用construct 2.8 对一些失传已久的 Pascal 程序创建的一些文件的 header 进行逆向工程。 header 由许多不同的记录组成,其中一些是可选的,我不确定顺序是否固定。
我在将 getchar() 的输入放入 char *arr[] 数组时遇到问题。我这样做的原因是因为输入数据(将是一个带有命令行参数的文件)将存储在一个 char 指针数组中以传递给 execvp 函
通常我们不能约束类型参数 T派生自密封类型(例如 struct 类型)。这将毫无意义,因为只有一种类型适合,因此不需要泛型。所以约束如下: where T : string 或: where T :
关闭。此题需要details or clarity 。目前不接受答案。 想要改进这个问题吗?通过 editing this post 添加详细信息并澄清问题. 已关闭 9 年前。 Improve th
#include using namespace std; class A { private: int m_i; friend int main(int argc, char cons
这个问题在这里已经有了答案: Are there legitimate uses for JavaScript's "with" statement? (33 个答案) 关闭 9 年前。 我有这个代
在this answer我看到了下一个 Bash 结构。 yes "$(< file.txt)" 什么意思 "$(< file.txt)" ? 我明白了 命令替换 - $(command)用命令的结
if (a == 1) //do something else if (a == 2) //do something else if (a == 3) //do somethi
关于构造的快速简单的问题。 我有以下用于将项目添加到 ListView 的代码。 ListViewItem item = new ListViewItem(); item.Text = file; i
我想使用 std::vector 来控制给定的内存。首先,我很确定这不是好的做法,但好奇心占了上风,无论如何我都想知道如何做到这一点。 我遇到的问题是这样的方法: vector getRow(unsi
下面显示了一段简单的javascript: var mystring = ("random","ignored","text","h") + ("ello world") 这个字符串会生成 hello
在 Java 中,创建对象的标准方法是使用 MyClass name = new MyClass(); 我也经常看到构造 new MyClass() { /*stuff goes in here*/
我正在编写 C++ ndarray 类。我需要动态大小和编译时大小已知的数组(分别分配自由存储和分配堆栈)。我想支持从嵌套的 std::initializer_list 进行初始化。 动态大小的没问题
我正在将一个项目从 Visual Studio 2005 转换为 Visual Studio 2008,并提出了上述结构。 using Castle.Core.Resource; using Cast
我想知道我在这里的想法是否正确,我主要针对接口(interface)进行编程,所以我想知道下面的类是否应该通过 DI 注入(inject),或者我应该自己实例化一个类... 注意:这些服务保存在我的核
我是一名优秀的程序员,十分优秀!