gpt4 book ai didi

c++ - 在 openCV 中计算并显示 LBP 直方图

转载 作者:塔克拉玛干 更新时间:2023-11-03 02:17:34 27 4
gpt4 key购买 nike

我想使用 LBP 和 SVM 创建一个实时情绪识别程序。经过面部检测过程后,我将捕获的图像转换为 32x32 像素的灰度图像。我很难为我的 LBP 创建和显示直方图(我使用简单的、未插值的 LBP)。到目前为止,我得到的是实时显示生成的 LBP 图像。

Ahonen 等。 al 的论文指出

divide the LBP image into m local regions and extract a histogram from each (region)

我们如何确定 m 个局部区域的数量?

我一直在努力寻找答案 here , 和 here但我无法理解它。我在这里看到了 berak 关于空间直方图的工作,但我仍然感到困惑。有人可以逐步教我吗(是的,我是新手 :/)。我真的需要计算并显示直方图,如第 14 页所示 here .

也许我应该在这里展示我凌乱的代码。

// Libraries included
#include "opencv2/core/core.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

// Namespace declaration
using namespace std;
using namespace cv;

// Function Headers
void detectAndDisplay(Mat frame);
Mat LBP(Mat img);

// Global variables
String face_cascade_name = "haarcascade_frontalface_alt.xml";
String eyes_cascade_name = "haarcascade_eye_tree_eyeglasses.xml";
CascadeClassifier face_cascade;
CascadeClassifier eyes_cascade;


// Function main
int main(){
// Start cvStartWindowThread to create a thread process. VERY IMPORTANT
cvStartWindowThread();

// Initializing local variables
int k=1;
CvCapture* capture;
Mat frame;

// Load the cascade, use ifs (if more than one xml files are used) to prevent segmentation fault
if (!face_cascade.load(face_cascade_name)){
printf("--(!)Error loading\n");
return (-1);
}
if( !eyes_cascade.load( eyes_cascade_name ) ){
printf("--(!)Error loading\n");
return -1;
};

// Start the program, capture from CAM with CAMID =0
capture = cvCaptureFromCAM(0 );
if( capture !=0){
while(k==1){
frame = cvQueryFrame( capture );
cv::flip(frame,frame,1);
//-- 3. Apply the classifier to the frame
if( !frame.empty() ){
detectAndDisplay( frame );
}
else{
printf(" --(!) No captured frame -- Break!");
break;
}
int c = waitKey(1);
if( (char)c == 'c' ) {
k=0;
destroyWindow("FYP Live Camera");
break;
}
}
}
else{
printf("CvCaptureFromCAM ERROR\n");
}
cvReleaseCapture(&capture);
return 0;
}

// Function detectAndDisplay
void detectAndDisplay(Mat frame){
std::vector<Rect> faces;
std::vector<Rect> eyes;
Mat frame_gray;
Mat crop;
Mat crop2;
Mat res;
Mat gray;
Mat dst;
string text;
stringstream sstm;


cvtColor(frame, frame_gray, COLOR_BGR2GRAY);
equalizeHist(frame_gray, frame_gray);

// Detect faces
face_cascade.detectMultiScale(frame_gray, faces, 1.1, 4, 0 | CV_HAAR_FIND_BIGGEST_OBJECT, Size(60, 60));

// Set Region of Interest
cv::Rect roi_b;
cv::Rect roi_c;

size_t ic = 0; // ic is index of current element


if (faces.size() !=0){
for (ic = 0; ic < faces.size(); ic++) // Iterate through all current elements (detected faces)
{
roi_b.x = faces[ic].x;
roi_b.y = faces[ic].y;
roi_b.width = faces[ic].width;
roi_b.height = faces[ic].height;

crop = frame(roi_b);
resize(crop, res, Size(256, 256), 0, 0, INTER_LINEAR); // This will be needed later while saving images

cvtColor(res, gray, CV_BGR2GRAY); // Convert cropped image to Grayscale

eyes_cascade.detectMultiScale(gray, eyes, 1.1, 4, 0 |CV_HAAR_SCALE_IMAGE, Size(15, 15) );
if (eyes.size() == 2){
if ( eyes[0].x <= eyes[1].x ){
roi_c.x = eyes[0].x*0.75;
roi_c.y = eyes[0].y*0.7;
roi_c.width = (eyes[1].x+65)-roi_c.x;
roi_c.height = 190;
}
else if ( eyes[0].x >= eyes[1].x ) {
roi_c.x = eyes[1].x*0.75;
roi_c.y = eyes[1].y*0.7;
roi_c.width = (eyes[0].x+65)-roi_c.x;
roi_c.height = 190;
}
crop2 = gray(roi_c);
resize(crop2, crop2, Size(128, 128), 0, 0, INTER_LINEAR); // This will be needed later while saving images

dst= LBP(crop2);

Point centerEye1( eyes[0].x + eyes[0].width*0.5, eyes[0].y + eyes[0].height*0.5 );
int radiusEye1 = cvRound( (eyes[0].width + eyes[0].height)*0.25 );
circle( gray, centerEye1, radiusEye1, Scalar( 0, 0, 255 ), 1, 8, 0 );

Point centerEye2( eyes[1].x + eyes[1].width*0.5, eyes[1].y + eyes[1].height*0.5 );
int radiusEye2 = cvRound( (eyes[1].width + eyes[1].height)*0.25 );
circle( gray, centerEye2, radiusEye2, Scalar( 0, 0, 255 ), 1, 8, 0 );

}

Point pt1(faces[ic].x, faces[ic].y); // Display detected faces on main window - live stream from camera
Point pt2((faces[ic].x + faces[ic].height), (faces[ic].y + faces[ic].width));
rectangle(frame, pt1, pt2, Scalar(0, 255, 0), 1, 8, 0);
putText(frame, "Auto-focused", cvPoint((faces[ic].x+faces[ic].width/4), faces[ic].y-10), FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0, 0, 255), 1, CV_AA);
}

}


imshow("Live Camera", frame);
if (!crop2.empty())
{
imshow("Gray2", dst);
imshow("Gray3", crop2);
}
else{
destroyWindow("Gray2");
destroyWindow("Gray3");
}
}
Mat LBP(Mat img){
Mat dst = Mat::zeros(img.rows-2, img.cols-2, CV_8UC1);
for(int i=1;i<img.rows-1;i++) {
for(int j=1;j<img.cols-1;j++) {
uchar center = img.at<uchar>(i,j);
unsigned char code = 0;
code |= ((img.at<uchar>(i-1,j-1)) > center) << 7;
code |= ((img.at<uchar>(i-1,j)) > center) << 6;
code |= ((img.at<uchar>(i-1,j+1)) > center) << 5;
code |= ((img.at<uchar>(i,j+1)) > center) << 4;
code |= ((img.at<uchar>(i+1,j+1)) > center) << 3;
code |= ((img.at<uchar>(i+1,j)) > center) << 2;
code |= ((img.at<uchar>(i+1,j-1)) > center) << 1;
code |= ((img.at<uchar>(i,j-1)) > center) << 0;
dst.at<uchar>(i-1,j-1) = code;
}
}
return dst;
}

显然我无法发布我的屏幕截图,因为我没有足够的信誉点:(

最佳答案

嗯,首先,您要计算的只是 LBP 模式,而不是直方图 - 您需要为此创建一个 bin 数组并生成 LBP 特征的直方图。在 bytefish 的代码中,如果您查看 github,您还会找到用于生成具有 59 个 bin 的直方图的代码。

关于c++ - 在 openCV 中计算并显示 LBP 直方图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/23752507/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com