- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我尝试了关于匹配 OpenCV 2.4.5 中的许 multimap 像的示例代码,并修改了该代码。我找到了错误代码:
Unhandled exception at 0x585a7090 in testing.exe:
0xC0000005: Access violation reading location 0x00000000.
它的错误在 featureDetector->detect(queryImage, queryKeypoints)
。
我找不到那个问题的解决方案。请帮助我。
#include <opencv2\highgui\highgui.hpp>
#include <opencv2\features2d\features2d.hpp>
#include <opencv2\contrib\contrib.hpp>
#include <iostream>
#include <fstream>
#include <conio.h>
#include <string>
using namespace std;
using namespace cv;
static void readTrainFilenames(const string& filename, string& dirName, vector<string>& trainFilenames);
static bool readImages(const string& queryImageName, Mat& queryImage);
static bool readTrainImages(const string& trainFilename, vector<Mat>& trainImages, vector<string>& trainImageNames);
static void detectKeypoints(const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const vector<Mat>& trainImages, vector<vector<KeyPoint>>& trainKeypoints, Ptr<FeatureDetector>& featureDetector);
static void readTrainFilenames(const string& filename, string& dirName, vector<string>& trainFilenames)
{
trainFilenames.clear();
ifstream file(filename.c_str());
if(!file.is_open())
{
cout << "File can't open" << endl;
return;
}
size_t pos = filename.rfind("\\");
char dlmtr = '\\';
if(pos == String::npos)
{
pos = filename.rfind('/');
dlmtr = '/';
}
dirName = pos == string::npos ? "" : filename.substr(0, pos) + dlmtr;
while(!file.eof())
{
string str; getline(file, str);
if(str.empty()) break;
trainFilenames.push_back(str);
} // end while
file.close();
} // end void readTrainFilenames
static bool readImages(const string& queryImageName, Mat& queryImage)
{
cout << "reading images..." << endl;
queryImage = imread(queryImageName, CV_LOAD_IMAGE_GRAYSCALE);
if(queryImage.empty())
{
cout << "query image can not be read. \n";
return false;
} // end if
return true;
}
static bool readTrainImages(const string& trainFilename, vector<Mat>& trainImages, vector<string>& trainImageNames)
{
cout << "reading training images..." << endl;
string trainDirName = "D:/matching_to_many_images/";
readTrainFilenames(trainFilename, trainDirName, trainImageNames);
if(trainImageNames.empty())
{
cout << "Train image filenames can not be read." << endl;
return false;
} // end if
int readImageCount = 0;
for(size_t i = 0; i < trainImageNames.size(); i++)
{
string filename = trainDirName + trainImageNames[i];
Mat img = imread(filename, CV_LOAD_IMAGE_GRAYSCALE);
if(img.empty())
{
cout << "Train image " << filename << " can not be read." << endl;
}
else
{
readImageCount++;
}// end if
trainImages.push_back(img);
} // end for
if(!readImageCount)
{
cout << "All train images can not be read." << endl;
return false;
}
else
{
cout << readImageCount << " train images were read." << endl;
}
cout << endl;
return true;
}
static void detectKeypoints(const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const vector<Mat>& trainImages,
vector<vector<KeyPoint>>& trainKeypoints,
Ptr<FeatureDetector>& featureDetector){
cout << endl << "Extracting keypoints from images..." << endl;
try{
featureDetector->detect(queryImage, queryKeypoints);
}
catch(Ptr<FeatureDetector> a)
{
cout << "hmm" << endl;
}
cout << endl;
} // end void detectKeypoints
int main()
{
const string defaultDetectorType = "SURF";
const string defaultDescriptorType = "SURF";
const string defaultMatcherType = "FlannBased";
const string defaultQueryImageName = "D:/matching_to_many_images/query.png";
const string defaultFileWithTrainImages = "D:/matching_to_many_images/train/trainImages.txt";
const string defaultDirToSaveResImages = "D:/matching_to_many_images/results";
Ptr<FeatureDetector> featureDetector;
Ptr<DescriptorExtractor> descriptorExtractor;
Ptr<DescriptorMatcher> descriptorMatcher;
Mat queryImages;
vector<Mat> trainImages;
vector<string> trainImagesNames;
vector<KeyPoint> queryKeypoints;
vector<vector<KeyPoint>> trainKeypoints;
if(!readImages(defaultQueryImageName, queryImages))
{
_getch();
return -1;
} // end if
if(!readTrainImages(defaultFileWithTrainImages, trainImages, trainImagesNames))
{
_getch();
return -1;
}
detectKeypoints(queryImages, queryKeypoints, trainImages, trainKeypoints, featureDetector);
cout << "\n done \n";
_getch();
return 0;
} // end main method
更新:
#include <opencv2\highgui\highgui.hpp>
#include <opencv2\features2d\features2d.hpp>
#include <opencv2\contrib\contrib.hpp>
#include <iostream>
#include <fstream>
#include <conio.h>
#include <string>
using namespace std;
using namespace cv;
static void readTrainFilenames(const string& filename, string& dirName, vector<string>& trainFilenames);
static bool readImages(const string& queryImageName, Mat& queryImage);
static bool readTrainImages(const string& trainFilename, vector<Mat>& trainImages, vector<string>& trainImageNames);
static void detectKeypoints(const Mat& queryImage, vector<KeyPoint>& queryKeypoints, Ptr<FeatureDetector>& featureDetector);
static void readTrainFilenames(const string& filename, string& dirName, vector<string>& trainFilenames)
{
trainFilenames.clear();
ifstream file(filename.c_str());
if(!file.is_open())
{
cout << "File can't open" << endl;
return;
}
size_t pos = filename.rfind("\\");
char dlmtr = '\\';
if(pos == String::npos)
{
pos = filename.rfind('/');
dlmtr = '/';
}
dirName = pos == string::npos ? "" : filename.substr(0, pos) + dlmtr;
while(!file.eof())
{
string str; getline(file, str);
if(str.empty()) break;
trainFilenames.push_back(str);
} // end while
file.close();
} // end void readTrainFilenames
static bool readImages(const string& queryImageName, Mat& queryImage)
{
cout << "reading images..." << endl;
queryImage = imread(queryImageName, CV_LOAD_IMAGE_GRAYSCALE);
if(queryImage.empty())
{
cout << "query image can not be read. \n";
return false;
} // end if
return true;
}
static bool readTrainImages(const string& trainFilename, vector<Mat>& trainImages, vector<string>& trainImageNames)
{
cout << "reading training images..." << endl;
string trainDirName = "D:/matching_to_many_images/";
readTrainFilenames(trainFilename, trainDirName, trainImageNames);
if(trainImageNames.empty())
{
cout << "Train image filenames can not be read." << endl;
return false;
} // end if
int readImageCount = 0;
for(size_t i = 0; i < trainImageNames.size(); i++)
{
string filename = trainDirName + trainImageNames[i];
Mat img = imread(filename, CV_LOAD_IMAGE_GRAYSCALE);
if(img.empty())
{
cout << "Train image " << filename << " can not be read." << endl;
}
else
{
readImageCount++;
}// end if
trainImages.push_back(img);
} // end for
if(!readImageCount)
{
cout << "All train images can not be read." << endl;
return false;
}
else
{
cout << readImageCount << " train images were read." << endl;
}
cout << endl;
return true;
}
static void detectKeypoints(const Mat& queryImage, vector<KeyPoint>& queryKeypoints, Ptr<FeatureDetector>& featureDetector){
cout << endl << "Extracting keypoints from images..." << endl;
featureDetector->detect(queryImage, queryKeypoints);
cout << endl;
} // end void detectKeypoints
int main()
{
const string defaultDetectorType = "SURF";
const string defaultDescriptorType = "SURF";
const string defaultMatcherType = "FlannBased";
const string defaultQueryImageName = "D:/matching_to_many_images/query.png";
const string defaultFileWithTrainImages = "D:/matching_to_many_images/train/trainImages.txt";
const string defaultDirToSaveResImages = "D:/matching_to_many_images/results";
Ptr<FeatureDetector> featureDetector;
Ptr<DescriptorExtractor> descriptorExtractor;
Ptr<DescriptorMatcher> descriptorMatcher;
Mat queryImages;
vector<Mat> trainImages;
vector<string> trainImagesNames;
vector<KeyPoint> queryKeypoints;
vector<vector<KeyPoint>> trainKeypoints;
if(!readImages(defaultQueryImageName, queryImages))
{
_getch();
return -1;
} // end if
if(!readTrainImages(defaultFileWithTrainImages, trainImages, trainImagesNames))
{
_getch();
return -1;
}
detectKeypoints(queryImages, queryKeypoints, featureDetector);
cout << "\n done \n";
_getch();
return 0;
} // end main method
已解决的问题:
#include <opencv2\highgui\highgui.hpp>
#include <opencv2\features2d\features2d.hpp>
#include <opencv2\contrib\contrib.hpp>
#include <opencv2\nonfree\nonfree.hpp>
#include <iostream>
#include <fstream>
#include <conio.h>
#include <string>
using namespace std;
using namespace cv;
const string defaultDetectorType = "SURF";
const string defaultDescriptorType = "SURF";
const string defaultMatcherType = "FlannBased";
const string defaultQueryImageName = "D:/matching_to_many_images/query.png";
const string defaultFileWithTrainImages = "D:/matching_to_many_images/train/trainImages.txt";
const string defaultDirToSaveResImages = "D:/matching_to_many_images/results";
static void readTrainFilenames(const string& filename, string& dirName, vector<string>& trainFilenames);
static bool readImages(const string& queryImageName, Mat& queryImage);
static bool readTrainImages(const string& trainFilename, vector<Mat>& trainImages, vector<string>& trainImageNames);
static void detectKeypoints(const Mat& queryImage, vector<KeyPoint>& queryKeypoints, Ptr<FeatureDetector>& featureDetector);
static bool createDetectorDescriptorMatcher(const string& detectorType,
const string& descriptorType,
const string& matcherType,
Ptr<FeatureDetector>& featureDetector,
Ptr<DescriptorExtractor>& descriptorExtractor,
Ptr<DescriptorMatcher>& descriptorMatcher);
static void readTrainFilenames(const string& filename, string& dirName, vector<string>& trainFilenames)
{
trainFilenames.clear();
ifstream file(filename.c_str());
if(!file.is_open())
{
cout << "File can't open" << endl;
return;
}
size_t pos = filename.rfind("\\");
char dlmtr = '\\';
if(pos == String::npos)
{
pos = filename.rfind('/');
dlmtr = '/';
}
dirName = pos == string::npos ? "" : filename.substr(0, pos) + dlmtr;
while(!file.eof())
{
string str; getline(file, str);
if(str.empty()) break;
trainFilenames.push_back(str);
} // end while
file.close();
} // end void readTrainFilenames
static bool readImages(const string& queryImageName, Mat& queryImage)
{
cout << "reading images..." << endl;
queryImage = imread(queryImageName, CV_LOAD_IMAGE_GRAYSCALE);
if(queryImage.empty())
{
cout << "query image can not be read. \n";
return false;
} // end if
return true;
}
static bool readTrainImages(const string& trainFilename, vector<Mat>& trainImages, vector<string>& trainImageNames)
{
cout << "reading training images..." << endl;
string trainDirName = "D:/matching_to_many_images/";
readTrainFilenames(trainFilename, trainDirName, trainImageNames);
if(trainImageNames.empty())
{
cout << "Train image filenames can not be read." << endl;
return false;
} // end if
int readImageCount = 0;
for(size_t i = 0; i < trainImageNames.size(); i++)
{
string filename = trainDirName + trainImageNames[i];
Mat img = imread(filename, CV_LOAD_IMAGE_GRAYSCALE);
if(img.empty())
{
cout << "Train image " << filename << " can not be read." << endl;
}
else
{
readImageCount++;
}// end if
trainImages.push_back(img);
} // end for
if(!readImageCount)
{
cout << "All train images can not be read." << endl;
return false;
}
else
{
cout << readImageCount << " train images were read." << endl;
}
cout << endl;
return true;
}
static void detectKeypoints(const Mat& queryImage, vector<KeyPoint>& queryKeypoints, Ptr<FeatureDetector>& featureDetector){
cout << endl << "Extracting keypoints from images..." << endl;
if(queryImage.empty())
{
cout << "Query Image EMPTY" << endl;
}
else{
cout << "Query Image FILLED" << endl;
}
featureDetector->detect(queryImage, queryKeypoints);
cout << endl;
} // end void detectKeypoints
static bool createDetectorDescriptorMatcher(const string& detectorType,
const string& descriptorType,
const string& matcherType,
Ptr<FeatureDetector>& featureDetector,
Ptr<DescriptorExtractor>& descriptorExtractor,
Ptr<DescriptorMatcher>& descriptorMatcher)
{
cout << "Creating feature detector, descriptor extractor and descriptor matcher ... " << endl;
featureDetector = FeatureDetector::create(detectorType);
descriptorExtractor = DescriptorExtractor::create(descriptorType);
descriptorMatcher = DescriptorMatcher::create(matcherType);
cout << endl;
if(featureDetector.empty())
{
cout << "feature detector empty" << endl;
}
if(descriptorExtractor.empty())
{
cout << "descriptor extractor empty" << endl;
}
if(descriptorMatcher.empty())
{
cout << "descriptor matcher empty" << endl;
}
bool isCreated = !(featureDetector.empty() || descriptorExtractor.empty() || descriptorMatcher.empty());
if(!isCreated)
{
cout << "can not create feature detector or descriptor extractor or descriptor matcher of given types." << endl;
} // end if
return isCreated;
} // end void createDetectorDescriptorMatcher
int main()
{
initModule_nonfree();
string detectorType = defaultDetectorType;
string descriptorType = defaultDetectorType;
string matcherType = defaultMatcherType;
string queryImageName = defaultQueryImageName;
string fileWithTrainImages = defaultFileWithTrainImages;
string dirToSaveResImages = defaultDirToSaveResImages;
Ptr<FeatureDetector> featureDetector = FeatureDetector::create("SURF");
Ptr<DescriptorExtractor> descriptorExtractor = DescriptorExtractor::create("SURF");
Ptr<DescriptorMatcher> descriptorMatcher;
if(!createDetectorDescriptorMatcher(detectorType, descriptorType, matcherType, featureDetector, descriptorExtractor, descriptorMatcher))
{
_getch();
return -1;
}
Mat queryImages;
vector<Mat> trainImages;
vector<string> trainImagesNames;
vector<KeyPoint> queryKeypoints;
vector<vector<KeyPoint>> trainKeypoints;
if(!readImages(defaultQueryImageName, queryImages))
{
_getch();
return -1;
} // end if
if(!readTrainImages(defaultFileWithTrainImages, trainImages, trainImagesNames))
{
_getch();
return -1;
}
detectKeypoints(queryImages, queryKeypoints, featureDetector);
cout << "\n done \n";
_getch();
return 0;
} // end main method
与许 multimap 像匹配的完整示例代码:
#include <opencv2\highgui\highgui.hpp>
#include <opencv2\features2d\features2d.hpp>
#include <opencv2\contrib\contrib.hpp>
#include <opencv2\nonfree\nonfree.hpp>
#include <iostream>
#include <fstream>
#include <conio.h>
#include <string>
using namespace std;
using namespace cv;
const string defaultDetectorType = "SURF";
const string defaultDescriptorType = "SURF";
const string defaultMatcherType = "FlannBased";
const string defaultQueryImageName = "D:/matching_to_many_images/query.png";
const string defaultFileWithTrainImages = "D:/matching_to_many_images/train/trainImages.txt";
const string defaultDirToSaveResImages = "D:/matching_to_many_images/results";
static void readTrainFilenames(const string& filename, string& dirName, vector<string>& trainFilenames);
static bool readImages(const string& queryImageName, Mat& queryImage);
static bool readTrainImages(const string& trainFilename, vector<Mat>& trainImages, vector<string>& trainImageNames);
static void detectKeypoints(const Mat& queryImage, vector<KeyPoint>& queryKeypoints, const vector<Mat>& trainImages, vector<vector<KeyPoint>>& trainKeypoints, Ptr<FeatureDetector>& featureDetector);
static bool createDetectorDescriptorMatcher(const string& detectorType,
const string& descriptorType,
const string& matcherType,
Ptr<FeatureDetector>& featureDetector,
Ptr<DescriptorExtractor>& descriptorExtractor,
Ptr<DescriptorMatcher>& descriptorMatcher);
static void computeDescriptors(const Mat& queryImage, vector<KeyPoint>& queryKeypoints, Mat& queryDescriptors,
const vector<Mat>& trainImages, vector<vector<KeyPoint>>& trainKeypoints, vector<Mat>& trainDescriptors,
Ptr<DescriptorExtractor>& descriptorExtractor);
static void matchDescriptors(const Mat& queryDescriptors, const vector<Mat>& trainDescriptors, vector<DMatch>& matches, Ptr<DescriptorMatcher>& descriptorMatcher);
static void maskMatchesByTrainImgIdx(const vector<DMatch>& matches, int trainImgIdx, vector<char>& mask);
static void readTrainFilenames(const string& filename, string& dirName, vector<string>& trainFilenames)
{
trainFilenames.clear();
ifstream file(filename.c_str());
if(!file.is_open())
{
cout << "File can't open" << endl;
return;
}
size_t pos = filename.rfind("\\");
char dlmtr = '\\';
if(pos == String::npos)
{
pos = filename.rfind('/');
dlmtr = '/';
}
dirName = pos == string::npos ? "" : filename.substr(0, pos) + dlmtr;
while(!file.eof())
{
string str; getline(file, str);
if(str.empty()) break;
trainFilenames.push_back(str);
} // end while
file.close();
} // end void readTrainFilenames
static bool readImages(const string& queryImageName, Mat& queryImage)
{
cout << "reading images..." << endl;
queryImage = imread(queryImageName, CV_LOAD_IMAGE_GRAYSCALE);
if(queryImage.empty())
{
cout << "query image can not be read. \n";
return false;
} // end if
return true;
}
static bool readTrainImages(const string& trainFilename, vector<Mat>& trainImages, vector<string>& trainImageNames)
{
cout << "reading training images..." << endl;
string trainDirName = "D:/matching_to_many_images/";
readTrainFilenames(trainFilename, trainDirName, trainImageNames);
if(trainImageNames.empty())
{
cout << "Train image filenames can not be read." << endl;
return false;
} // end if
int readImageCount = 0;
for(size_t i = 0; i < trainImageNames.size(); i++)
{
string filename = trainDirName + trainImageNames[i];
Mat img = imread(filename, CV_LOAD_IMAGE_GRAYSCALE);
if(img.empty())
{
cout << "Train image " << filename << " can not be read." << endl;
}
else
{
readImageCount++;
}// end if
trainImages.push_back(img);
} // end for
if(!readImageCount)
{
cout << "All train images can not be read." << endl;
return false;
}
else
{
cout << readImageCount << " train images were read." << endl;
}
cout << endl;
return true;
}
static void detectKeypoints(const Mat& queryImage, vector<KeyPoint>& queryKeypoints, const vector<Mat>& trainImages, vector<vector<KeyPoint>>& trainKeypoints, Ptr<FeatureDetector>& featureDetector){
cout << endl << "Extracting keypoints from images..." << endl;
if(queryImage.empty())
{
cout << "Query Image EMPTY" << endl;
}
else{
cout << "Query Image FILLED" << endl;
}
featureDetector->detect(queryImage, queryKeypoints);
featureDetector->detect(trainImages, trainKeypoints);
cout << endl;
} // end void detectKeypoints
static bool createDetectorDescriptorMatcher(const string& detectorType,
const string& descriptorType,
const string& matcherType,
Ptr<FeatureDetector>& featureDetector,
Ptr<DescriptorExtractor>& descriptorExtractor,
Ptr<DescriptorMatcher>& descriptorMatcher)
{
cout << "Creating feature detector, descriptor extractor and descriptor matcher ... " << endl;
featureDetector = FeatureDetector::create(detectorType);
descriptorExtractor = DescriptorExtractor::create(descriptorType);
descriptorMatcher = DescriptorMatcher::create(matcherType);
cout << endl;
if(featureDetector.empty())
{
cout << "feature detector empty" << endl;
}
if(descriptorExtractor.empty())
{
cout << "descriptor extractor empty" << endl;
}
if(descriptorMatcher.empty())
{
cout << "descriptor matcher empty" << endl;
}
bool isCreated = !(featureDetector.empty() || descriptorExtractor.empty() || descriptorMatcher.empty());
if(!isCreated)
{
cout << "can not create feature detector or descriptor extractor or descriptor matcher of given types." << endl;
} // end if
return isCreated;
} // end void createDetectorDescriptorMatcher
static void computeDescriptors(const Mat& queryImage, vector<KeyPoint>& queryKeypoints, Mat& queryDescriptors,
const vector<Mat>& trainImages, vector<vector<KeyPoint>>& trainKeypoints, vector<Mat>& trainDescriptors,
Ptr<DescriptorExtractor>& descriptorExtractor)
{
cout << "computing descriptors for keypoints..." << endl;
descriptorExtractor->compute(queryImage, queryKeypoints, queryDescriptors);
descriptorExtractor->compute(trainImages, trainKeypoints, trainDescriptors);
int totalTrainDesc = 0;
for(vector<Mat>::const_iterator tdIter = trainDescriptors.begin(); tdIter != trainDescriptors.end(); tdIter++)
totalTrainDesc += tdIter->rows;
cout << "Query descriptors count : " << queryDescriptors.rows << "; Total train descriptors count : " << totalTrainDesc << endl;
cout << endl;
} // end void computeDescriptors
static void matchDescriptors(const Mat& queryDescriptors, const vector<Mat>& trainDescriptors, vector<DMatch>& matches, Ptr<DescriptorMatcher>& descriptorMatcher)
{
cout << "Set train descriptors collection in the matcher and match query descriptors to them..." << endl;
TickMeter tm;
tm.start();
descriptorMatcher->add(trainDescriptors);
descriptorMatcher->train();
tm.stop();
double buildTime = tm.getTimeMilli();
tm.start();
descriptorMatcher->match(queryDescriptors, matches);
tm.stop();
double matchTime = tm.getTimeMilli();
CV_Assert(queryDescriptors.rows == (int)matches.size() || matches.empty());
cout << "Number of matches: " << matches.size() << endl;
cout << "Build time: " << buildTime << " ms; Match time: " << matchTime << " ms" << endl;
cout << endl;
} // end void matchDescriptors
static void saveResultImages(const Mat& queryImage, const vector<KeyPoint>& queryKeypoints,
const vector<Mat>& trainImages, const vector<vector<KeyPoint>> &trainKeypoints, const vector<DMatch>& matches,
const vector<string>& trainImageNames, const string& resultDir)
{
cout << "Save results..." << endl;
Mat drawImg;
vector<char> mask;
for(size_t i = 0; i < trainImages.size(); i++)
{
if(!trainImages[i].empty())
{
maskMatchesByTrainImgIdx(matches, (int)i, mask);
drawMatches(queryImage, queryKeypoints, trainImages[i], trainKeypoints[i], matches, drawImg, Scalar(255, 0, 0), Scalar(0, 255, 255), mask);
string filename = resultDir + "/res_" + trainImageNames[i];
if(!imwrite(filename, drawImg))
{
cout << "Image " << filename << " can not be saved (may be because directory " << resultDir << " does not exist" << endl;
} // end if
} // end if
}
} // end void saveResultImages
static void maskMatchesByTrainImgIdx(const vector<DMatch>& matches, int trainImgIdx, vector<char>& mask)
{
mask.resize(matches.size());
fill(mask.begin(), mask.end(), 0);
for(size_t i = 0; i < matches.size(); i++)
{
if(matches[i].imgIdx == trainImgIdx)
{
mask[i] = 1;
}
}
} // end void maskMatchesByTrainImgIdx
int main()
{
initModule_nonfree();
string detectorType = defaultDetectorType;
string descriptorType = defaultDetectorType;
string matcherType = defaultMatcherType;
string queryImageName = defaultQueryImageName;
string fileWithTrainImages = defaultFileWithTrainImages;
string dirToSaveResImages = defaultDirToSaveResImages;
Ptr<FeatureDetector> featureDetector = FeatureDetector::create("SURF");
Ptr<DescriptorExtractor> descriptorExtractor = DescriptorExtractor::create("SURF");
Ptr<DescriptorMatcher> descriptorMatcher;
if(!createDetectorDescriptorMatcher(detectorType, descriptorType, matcherType, featureDetector, descriptorExtractor, descriptorMatcher))
{
_getch();
return -1;
}
Mat queryImages;
vector<Mat> trainImages;
vector<string> trainImagesNames;
vector<KeyPoint> queryKeypoints;
vector<vector<KeyPoint>> trainKeypoints;
if(!readImages(defaultQueryImageName, queryImages))
{
_getch();
return -1;
} // end if
if(!readTrainImages(defaultFileWithTrainImages, trainImages, trainImagesNames))
{
_getch();
return -1;
}
detectKeypoints(queryImages, queryKeypoints, trainImages, trainKeypoints, featureDetector);
Mat queryDescriptors;
vector<Mat> trainDescriptors;
computeDescriptors(queryImages, queryKeypoints, queryDescriptors, trainImages, trainKeypoints, trainDescriptors, descriptorExtractor);
vector<DMatch> matches;
matchDescriptors(queryDescriptors, trainDescriptors, matches, descriptorMatcher);
saveResultImages(queryImages, queryKeypoints, trainImages, trainKeypoints, matches, trainImagesNames, dirToSaveResImages);
cout << "\n done \n";
_getch();
return 0;
} // end main method
最佳答案
documentation for class FeatureDetector
表示,它是一个抽象基类,这意味着您不应该能够创建该类的实例。这是 OpenCV 的错,编译器没有提示!
尝试添加:
Ptr<FeatureDetector> featureDetector = FeatureDetector::create(defaultDetectorType);
更新:
我的下一个建议是降低复杂性。简化主程序,直到你有一个最小的工作版本:
int main()
{
cv::initModule_nonfree(); // to load SURF/SIFT etc.
std::vector<cv::KeyPoint> queryKeypoints;
cv::Mat queryImage = cv::imread(FILENAME, CV_LOAD_IMAGE_GRAYSCALE);
cv::Ptr<FeatureDetector> featureDetector = cv::FeatureDetector::create("SURF");
featureDetector->detect(queryImage, queryKeypoints);
}
如果以上版本有效,开始添加更多功能(慢慢地),直到您到达当前版本。一旦错误再次出现,您就知道最后添加的部分是罪魁祸首,您可以专注于此。
如果上面的版本不行,你至少创建了一个SSCCE ,您可以尝试修复(在其他人的帮助下)。
顺便说一句:错误消息告诉你,你的程序正在尝试读取内存位置 0x00000000
这是一个指示符,你正在使用未初始化的数据结构,但我不确定在哪里问题出在你的程序中。
关于c++ - FeatureDetector OpenCV 2.4.5 中的访问违规读取,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/16516023/
我遇到以下问题。我想读取一个包含数百万行和数百列的大型 csv。我想向下转换列的数据类型。我的方法是读取 csv,然后使用 pd.to_numeric() 对其进行向下转换。我不知道列数及其类型。在读
目前,我从 SQL server (2008) 数据库获取数据。 cyurrent的方法是使用DataTable,然后将其传递并使用。 if (parameters != null)
我有以下问题。我有一个巨大的 csv 文件,想用多处理加载它。对于一个包含 500000 行和 130 列不同数据类型的示例文件,Pandas 需要 19 秒。我试过 dask 因为我想多处理阅读。但
是否有关于用于序列化各种 MFC 数据结构的二进制格式的明确文档?我已经能够在十六进制编辑器中查看我自己的一些类,并使用 Java 的 ByteBuffer 类读取它们(使用自动字节顺序转换等)。 但
我正在使用 Selenium 进行测试,我们用 HTML 文件编写测试用例,并用它们制作测试套件,我们的要求是编写足够健壮的测试用例,以根据测试环境改变自身。 为此,我不希望在 HTML 脚本本身中包
我需要一个 JavaScript 代码来读取存储为 .txt 文件的字典(或者也可以保存为任何其他类型的文件。它也可以在线获得)并将其内容存储在一个变量中。我不能找到一种让 JavaScript 像
我正在尝试遍历包含 SSH 登录和其他日志的日志文本文件。 程序正在返回 SSH 登录的总数。 我的解决方案确实有效,但似乎有点慢(在 200mo 文件上大约需要 3.5 秒)。我想知道是否有任何方法
我正在将大量数据从一个电子表格复制到工作簿中的其他 160 个电子表格。目前,Excel (2013) 遇到错误,因为它没有足够的资源来完成操作。 我的目标是将工作表 4 中 V13:XI1150 范
我正在尝试读取一个有 1147 行的文本文件。下面的代码仅读取第 1050-1147 行。我的目标是读取整个文件并提取位于不同行的特定值以在脚本中使用。一个示例是包含“BlockList: 2”的行中
我正在为游戏编写解释器。用户将其移动输入解释器,程序执行该移动。 现在我想为每个决定实现一个时间限制。玩家不应该能够思考超过 30 秒来写一个移动并按下回车。 call_with_time_limit
以this file例如,我正在尝试读取 data.frame 中的数据。来自 the doc (pdf 文件,表 1),它遵循一些 fortran 约定。我尝试了以下但收效甚微: dir 0' 将
我正在使用 R 阅读 Outlook 附件。我的引用在这里:Download attachment from an outlook email using R 这是我的电子邮件的截图: 这每天都会发送
我不会从表格中读取行来将主题放在列表中 php脚本 $url_obj='http://'.$host.':8069/xmlrpc/object'; $sock=new xmlrpc_client($u
我有一个这样的 csv 文件: id,name,value 1,peter,5 2,peter\,paul,3 我如何读取此文件并告诉 R "\," 不表示新列,仅表示 ","。 我必须添加该文件
我正在尝试读取 ~/Library/Preferences/com.apple.mail.plist (在 Snow Leopard 上)以获取电子邮件地址和其他信息以进入“关于”对话框。我使用以下代
This question already has answers here: How do I use floating-point division in bash? (19个回答) 5个月前关闭
本练习的目标是读取输入文件并将其存储到表中,然后验证输入中的某些字段并输出任何错误记录。我需要读取并存储每个策略组,以便表中一次仅存储 5 条记录,而不是整个文件。 所以我需要读取一个包含 5 条记录
据我了解,LWT 插入始终以 SERIAL 一致性级别完成。如果为 true,这是否意味着读取作为 LWT 插入的行可以安全地以 ANY 的一致性级别读取? 换句话说,我假设 LWT 插入是完全一致的
我看到很多很多通过java脚本读取cookie的函数,但我只想在变量中使用它一次,我是JS新手。 这是我的代码 var TheNumber = (Math.random() + '') * 10000
我正在使用 asp.net 和 C#。我在服务器上部署了一个应用程序[已发布],现在我想查看该网站的代码,据我所知,我可以阅读程序集来查看代码。 请告诉我如何实现它。 提前致谢。 最佳答案 您可以使用
我是一名优秀的程序员,十分优秀!