- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我正在为我的应用构建一个扫描仪功能,并使用 OpenCV 将文档的照片二值化:
// convert to greyscale
cv::Mat converted, blurred, blackAndWhite;
converted = cv::Mat(inputMatrix.rows, inputMatrix.cols, CV_8UC1);
cv::cvtColor(inputMatrix, converted, CV_BGR2GRAY );
// remove noise
cv::GaussianBlur(converted, blurred, cvSize(3,3), 0);
// adaptive threshold
cv::adaptiveThreshold(blackAndWhite, blackAndWhite, 255, cv::ADAPTIVE_THRESH_GAUSSIAN_C, cv::THRESH_BINARY, 15 , 9);
结果还可以,但来自不同扫描仪应用程序的扫描效果要好得多。尤其是非常小的文本要好得多:用opencv处理
我能做些什么来改善我的结果?
最佳答案
可能是应用程序正在使用 anti-aliasing使他们的二值化输出看起来更好。为了获得类似的效果,我首先尝试对图像进行二值化处理,但由于所有锯齿状边缘,结果看起来不太好。然后我对结果应用金字塔上采样然后下采样,输出更好。
但是我没有使用自适应阈值。我分割了类似文本的区域并仅处理这些区域,然后粘贴它们以形成最终图像。它是一种使用 Otsu 方法或 k-means 的局部阈值(在代码中使用 thr_roi_otsu
、thr_roi_kmeans
和 proc_parts
的组合) .以下是一些结果。
将 Otsu 阈值应用于所有文本区域,然后进行上采样,然后进行下采样:
一些文字:
全图:
对输入图像进行上采样,将 Otsu 阈值应用于各个文本区域,对结果进行下采样:
一些文字:
全图:
/*
apply Otsu threshold to the region in mask
*/
Mat thr_roi_otsu(Mat& mask, Mat& im)
{
Mat bw = Mat::ones(im.size(), CV_8U) * 255;
vector<unsigned char> pixels(countNonZero(mask));
int index = 0;
for (int r = 0; r < mask.rows; r++)
{
for (int c = 0; c < mask.cols; c++)
{
if (mask.at<unsigned char>(r, c))
{
pixels[index++] = im.at<unsigned char>(r, c);
}
}
}
// threshold pixels
threshold(pixels, pixels, 0, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
// paste pixels
index = 0;
for (int r = 0; r < mask.rows; r++)
{
for (int c = 0; c < mask.cols; c++)
{
if (mask.at<unsigned char>(r, c))
{
bw.at<unsigned char>(r, c) = pixels[index++];
}
}
}
return bw;
}
/*
apply k-means to the region in mask
*/
Mat thr_roi_kmeans(Mat& mask, Mat& im)
{
Mat bw = Mat::ones(im.size(), CV_8U) * 255;
vector<float> pixels(countNonZero(mask));
int index = 0;
for (int r = 0; r < mask.rows; r++)
{
for (int c = 0; c < mask.cols; c++)
{
if (mask.at<unsigned char>(r, c))
{
pixels[index++] = (float)im.at<unsigned char>(r, c);
}
}
}
// cluster pixels by gray level
int k = 2;
Mat data(pixels.size(), 1, CV_32FC1, &pixels[0]);
vector<float> centers;
vector<int> labels(countNonZero(mask));
kmeans(data, k, labels, TermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0), k, KMEANS_PP_CENTERS, centers);
// examine cluster centers to see which pixels are dark
int label0 = centers[0] > centers[1] ? 1 : 0;
// paste pixels
index = 0;
for (int r = 0; r < mask.rows; r++)
{
for (int c = 0; c < mask.cols; c++)
{
if (mask.at<unsigned char>(r, c))
{
bw.at<unsigned char>(r, c) = labels[index++] != label0 ? 255 : 0;
}
}
}
return bw;
}
/*
apply procfn to each connected component in the mask,
then paste the results to form the final image
*/
Mat proc_parts(Mat& mask, Mat& im, Mat (procfn)(Mat&, Mat&))
{
Mat tmp = mask.clone();
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
findContours(tmp, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
Mat byparts = Mat::ones(im.size(), CV_8U) * 255;
for(int idx = 0; idx >= 0; idx = hierarchy[idx][0])
{
Rect rect = boundingRect(contours[idx]);
Mat msk = mask(rect);
Mat img = im(rect);
// process the rect
Mat roi = procfn(msk, img);
// paste it to the final image
roi.copyTo(byparts(rect));
}
return byparts;
}
int _tmain(int argc, _TCHAR* argv[])
{
Mat im = imread("1.jpg", 0);
// detect text regions
Mat morph;
Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(3, 3));
morphologyEx(im, morph, CV_MOP_GRADIENT, kernel, Point(-1, -1), 1);
// prepare a mask for text regions
Mat bw;
threshold(morph, bw, 0, 255, THRESH_BINARY | THRESH_OTSU);
morphologyEx(bw, bw, CV_MOP_DILATE, kernel, Point(-1, -1), 10);
Mat bw2x, im2x;
pyrUp(bw, bw2x);
pyrUp(im, im2x);
// apply Otsu threshold to all text regions, then upsample followed by downsample
Mat otsu1x = thr_roi_otsu(bw, im);
pyrUp(otsu1x, otsu1x);
pyrDown(otsu1x, otsu1x);
// apply k-means to all text regions, then upsample followed by downsample
Mat kmeans1x = thr_roi_kmeans(bw, im);
pyrUp(kmeans1x, kmeans1x);
pyrDown(kmeans1x, kmeans1x);
// upsample input image, apply Otsu threshold to all text regions, downsample the result
Mat otsu2x = thr_roi_otsu(bw2x, im2x);
pyrDown(otsu2x, otsu2x);
// upsample input image, apply k-means to all text regions, downsample the result
Mat kmeans2x = thr_roi_kmeans(bw2x, im2x);
pyrDown(kmeans2x, kmeans2x);
// apply Otsu threshold to individual text regions, then upsample followed by downsample
Mat otsuparts1x = proc_parts(bw, im, thr_roi_otsu);
pyrUp(otsuparts1x, otsuparts1x);
pyrDown(otsuparts1x, otsuparts1x);
// apply k-means to individual text regions, then upsample followed by downsample
Mat kmeansparts1x = proc_parts(bw, im, thr_roi_kmeans);
pyrUp(kmeansparts1x, kmeansparts1x);
pyrDown(kmeansparts1x, kmeansparts1x);
// upsample input image, apply Otsu threshold to individual text regions, downsample the result
Mat otsuparts2x = proc_parts(bw2x, im2x, thr_roi_otsu);
pyrDown(otsuparts2x, otsuparts2x);
// upsample input image, apply k-means to individual text regions, downsample the result
Mat kmeansparts2x = proc_parts(bw2x, im2x, thr_roi_kmeans);
pyrDown(kmeansparts2x, kmeansparts2x);
return 0;
}
关于c++ - 使用 OpenCV 改进文本二值化/OCR 预处理,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43659275/
我对编码还比较陌生,但并非完全没有经验。处理有关金融计算器的学校作业。如果你们中的任何人可以查看我的代码以了解不良做法/可能的改进等,那就太好了。 我确实添加了一个“动画”启动(有很多 printf
小目标Trick 论文链接: https://paperswithcode.com/paper/slicing-aided-hyper-inference-and-fine-tuning 代码链接:h
if (firstPositionCpc && (firstPosition > 0 && firstPositionCpc 0 && topOfPageCpc 0 && firstPageCpc
我有 2 个表:“packages”和“items”。 “packages”有以下列:pack_id | item_id “items”有以下列......:item_id |输入 一个包可以有多个
我目前有一个 Pandas Dataframe,我在其中执行列之间的比较。我发现一种情况,在进行比较时存在空列,由于某种原因比较返回 else 值。我添加了一个额外的语句来将其清理为空。看看我是否可以
我正在处理一个查询,通过首先舍入它们的主要日期时间键来连接一个数据库中的多个表。数据库包含来自 openhab 的性能数据,每个表只有一个名为 Time 的主日期时间行和一个名为 Value 的值行。
问候 我有一个程序创建一个类的多个实例,在所有实例上运行相同的长时间运行的 Update 方法并等待完成。我从 this question 开始关注 Kev 的方法将更新添加到 ThreadPool.
我想在下学期的类(class)中取得领先,所以我制作了这个基本版本的 Blackjack 来开始理解 C 的基础知识,我希望您有任何想法可以帮助我更好地理解 C 和其正常的编码实践。 C 中的很多东西
我有一个要求,比如: 给定一个数组,其中包含随机数。需要输出元素出现的次数,有自带解决方案: var myArr = [3,2,1,2,3,1,4,5,4,6,7,7,9,1,123,0,123];
这是我的数据库项目。 表user_ select id, name from user_; id | name ----+---------- 1 | bartek 2 | bartek
我已经完成了一个小批量脚本来调整(动态)一些图像的大小: for a in *.{png,PNG,jpg,JPG,jpeg,JPEG,bmp,BMP} ; do convert "$a" -resiz
是否有更 pythonic 的方法来执行以下代码?我想在一行中完成 parsed_rows 是一个可以返回大小为 3 或 None 的元组的函数。 parsed_rows = [ parse_row(
关闭。这个问题是opinion-based .它目前不接受答案。 想要改进这个问题? 更新问题,以便 editing this post 可以用事实和引用来回答它. 关闭 9 年前。 Improv
下面的代码完成了我想要的,但还有其他更像 python 风格的方式吗? 文件格式: key1:value1,key2:value2,... key21:value21,key22:value22,..
如果两个英文单词只包含相同的字母,则它们是相似的。例如,food 和 good 不相似,但 dog 和 good 相似。 (如果A与B相似,则A中的所有字母都包含在B中,B中的所有字母都包含在A中。)
我有以下结构来表示二叉树: typedef struct node *pnode; typedef struct node { int val; pnode left; pnode
我有一个区域,它由受约束的 delaunay 三角剖分表示。我正在解决在两点之间寻找路径的问题。我正在使用 Marcelo Kallmann 提供的论文作为解决此问题的引用点。然而,而不是使用 Kal
如果我需要检查文本(字符串)中是否存在单词 A 或单词 B,如果我这样做会有性能差异: if(text.contains(wordA) || text.contains(wordB)) 要使用一些正则
Adjust To 我有上面这个简单的页面,上面有一个标签和一个文本框。我想在文本框中输入文本。 对我有帮助的 XPATH 是 //*[contains(tex
以下伪代码的elisp代码 if "the emacs version is less than 23.1.x" do something else something-else 写成 (if
我是一名优秀的程序员,十分优秀!