- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我一直在尝试将一些 cuda/C 代码转换成更面向对象的代码,但以我目前对 cuda 功能机制的理解,我的目标似乎并不容易实现。对于这种情况,我也找不到很好的解释。毕竟这可能是不可能的。
我有一个 global 类 myClass 的对象,它包含一个要填充到内核中的数组。
myClass 中的方法应该如何定义,以便数组和 bool 成员从设备可见,然后数组可以复制回主机 ?我使用的是 cuda 7.5,我的卡的计算能力是 3.5。
这是描述情况的暂定结构:
#include <cstdio>
#include <cuda.h>
#include <cuda_runtime.h>
class myClass
{
public:
bool bool_var; // Set from host and readable from device
int data_size; // Set from host
__device__ __host__ myClass();
__device__ __host__ ~myClass();
__host__ void setValues(bool iftrue, int size);
__device__ void dosomething(int device_parameter);
__host__ void export();
// completely unknown methods
__host__ void prepareDeviceObj();
__host__ void retrieveDataToHost();
private:
int *data; // Filled in device, shared between threads, at the end copied back to host for data output
};
__host__ __device__ myClass::myClass()
{
}
__host__ __device__ myClass::~myClass()
{
#ifdef __CUDACC__
if(bool_var)
cudaFree(data);
#else
free(data);
#endif
}
__host__ void myClass::setValues(bool iftrue, int size)
{
bool_var = iftrue;
data_size = size;
}
__device__ void myClass::dosomething(int idx)
{
int toadd = idx+data_size;
atomicAdd(&data[idx], toadd); // data should be unique among threads
}
__global__ void myKernel(myClass obj)
{
const int idx = blockIdx.x*blockDim.x + threadIdx.x;
if(idx < obj.data_size)
{
if(!obj.bool_var)
printf("Object is not up to any task here!");
else
{
printf("Object is ready!");
obj.dosomething(idx);
}
}
}
myClass globalInstance;
int main(int argc, char** argv)
{
int some_number = 40;
globalInstance.setValues(true, some_number);
globalInstance.prepareDeviceObj(); // unknown
myKernel<<<1,some_number>>>(globalInstance); // how to pass the object?
globalInstance.retrieveDataToHost(); // unknown
globalInstance.export();
exit(EXIT_SUCCESS);
}
最佳答案
您的方法应该可行。当您按值将对象作为内核参数传递时(如您所指出的),实际上不需要做太多与从主机到设备的传输相关的设置。
您需要在主机和设备上正确分配数据,并在适当的点使用 cudaMemcpy
类型的操作来移动数据,就像在普通的 CUDA 程序中一样。
像您所做的那样在全局范围内声明对象时要注意的一件事是,建议不要在对象的构造函数或析构函数中使用 CUDA API 调用。覆盖原因here ,这里不再赘述。尽管该处理主要集中在 main 之前启动的内核,但 CUDA 惰性初始化也会影响在 main
范围之外执行的任何 CUDA API 调用,这适用于在全局范围内实例化的对象的构造函数和析构函数。
以下是您所展示内容的充实示例。我基本上没有更改您已经编写的代码,只是为您没有的代码添加了一些方法定义。这里显然有很多不同的可能方法。有关更多示例,您可能需要查看 CUDA C++ integration sample code .
这是一个围绕您所展示内容的工作示例:
$ cat t1236.cu
#include <cstdio>
class myClass
{
public:
bool bool_var; // Set from host and readable from device
int data_size; // Set from host
__host__ myClass();
__host__ ~myClass();
__host__ void setValues(bool iftrue, int size);
__device__ void dosomething(int device_parameter);
__host__ void export_data();
// completely unknown methods
__host__ void prepareDeviceObj();
__host__ void retrieveDataToHost();
private:
int *data; // Filled in device, shared between threads, at the end copied back to host for data output
int *h_data;
};
__host__ myClass::myClass()
{
}
__host__ myClass::~myClass()
{
}
__host__ void myClass::prepareDeviceObj(){
cudaMemcpy(data, h_data, data_size*sizeof(h_data[0]), cudaMemcpyHostToDevice);
}
__host__ void myClass::retrieveDataToHost(){
cudaMemcpy(h_data, data, data_size*sizeof(h_data[0]), cudaMemcpyDeviceToHost);
}
__host__ void myClass::setValues(bool iftrue, int size)
{
bool_var = iftrue;
data_size = size;
cudaMalloc(&data, data_size*sizeof(data[0]));
h_data = (int *)malloc(data_size*sizeof(h_data[0]));
memset(h_data, 0, data_size*sizeof(h_data[0]));
}
__device__ void myClass::dosomething(int idx)
{
int toadd = idx+data_size;
atomicAdd(&(data[idx]), toadd); // data should be unique among threads
}
__host__ void myClass::export_data(){
for (int i = 0; i < data_size; i++) printf("%d ", h_data[i]);
printf("\n");
cudaFree(data);
free(h_data);
}
__global__ void myKernel(myClass obj)
{
const int idx = blockIdx.x*blockDim.x + threadIdx.x;
if(idx < obj.data_size)
{
if(!obj.bool_var)
printf("Object is not up to any task here!");
else
{
//printf("Object is ready!");
obj.dosomething(idx);
}
}
}
myClass globalInstance;
int main(int argc, char** argv)
{
int some_number = 40;
globalInstance.setValues(true, some_number);
globalInstance.prepareDeviceObj();
myKernel<<<1,some_number>>>(globalInstance);
globalInstance.retrieveDataToHost();
globalInstance.export_data();
exit(EXIT_SUCCESS);
}
$ nvcc -o t1236 t1236.cu
$ cuda-memcheck ./t1236
========= CUDA-MEMCHECK
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
========= ERROR SUMMARY: 0 errors
$
关于c++ - 从 cuda 内核访问类数据成员——如何设计适当的主机/设备交互?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39006348/
这是我关于 Stack Overflow 的第一个问题,这是一个很长的问题。 tl;dr 版本是:我如何使用 thrust::device_vector如果我希望它存储不同类型的对象 DerivedC
我已使用 cudaMalloc 在设备上分配内存并将其传递给内核函数。是否可以在内核完成执行之前从主机访问该内存? 最佳答案 我能想到的在内核仍在执行时启动 memcpy 的唯一方法是在与内核不同的流
是否可以在同一节点上没有支持 CUDA 的设备的情况下编译 CUDA 程序,仅使用 NVIDIA CUDA Toolkit...? 最佳答案 你的问题的答案是肯定的。 nvcc编译器驱动程序与设备的物
我不知道 cuda 不支持引用参数。我的程序中有这两个函数: __global__ void ExtractDisparityKernel ( ExtractDisparity& es)
我正在使用 CUDA 5.0。我注意到编译器将允许我在内核中使用主机声明的 int 常量。但是,它拒绝编译任何使用主机声明的 float 常量的内核。有谁知道这种看似差异的原因? 例如,下面的代码可以
自从 CUDA 9 发布以来,显然可以将不同的线程和 block 分组到同一组中,以便您可以一起管理它们。这对我来说非常有用,因为我需要启动一个包含多个 block 的内核并等待所有 block 都同
我需要在 CUDA 中执行三线性插值。这是问题定义: 给定三个点向量:x[nx]、y[ny]、z[nz] 和一个函数值矩阵func[nx][ny][nz],我想在 x、y 范围之间的一些随机点处找到函
我认为由于 CUDA 可以执行 64 位 128 位加载/存储,因此它可能具有一些用于加/减/等的内在函数。像 float3 这样的向量类型,在像 SSE 这样更少的指令中。 CUDA 有这样的功能吗
我有一个问题,每个线程 block (一维)必须对共享内存内的一个数组进行扫描,并执行几个其他任务。 (该数组最多有 1024 个元素。) 有没有支持这种操作的好库? 我检查了 Thrust 和 Cu
我对线程的形成和执行方式有很多疑惑。 首先,文档将 GPU 线程描述为轻量级线程。假设我希望将两个 100*100 矩阵相乘。如果每个元素都由不同的线程计算,则这将需要 100*100 个线程。但是,
我正在尝试自己解决这个问题,但我不能。 所以我想听听你的建议。 我正在编写这样的内核代码。 VGA 是 GTX 580。 xxxx >> (... threadNum ...) (note. Shar
查看 CUDA Thrust 代码中的内核启动,似乎它们总是使用默认流。我可以让 Thrust 使用我选择的流吗?我在 API 中遗漏了什么吗? 最佳答案 我想在 Thrust 1.8 发布后更新 t
我想知道 CUDA 应用程序的扭曲调度顺序是否是确定性的。 具体来说,我想知道在同一设备上使用相同输入数据多次运行同一内核时,warp 执行的顺序是否会保持不变。如果没有,是否有任何东西可以强制对扭曲
一个 GPU 中可以有多少个 CUDA 网格? 两个网格可以同时存在于 GPU 中吗?还是一台 GPU 设备只有一个网格? Kernel1>(dst1, param1); Kernel1>(dst2,
如果我编译一个计算能力较低的 CUDA 程序,例如 1.3(nvcc 标志 sm_13),并在具有 Compute Capability 2.1 的设备上运行它,它是否会利用 Compute 2.1
固定内存应该可以提高从主机到设备的传输速率(api 引用)。但是我发现我不需要为内核调用 cuMemcpyHtoD 来访问这些值,也不需要为主机调用 cuMemcpyDtoA 来读取值。我不认为这会奏
我希望对 CUDA C 中负载平衡的最佳实践有一些一般性的建议和说明,特别是: 如果经纱中的 1 个线程比其他 31 个线程花费的时间长,它会阻止其他 31 个线程完成吗? 如果是这样,多余的处理能力
CUDA 中是否有像 opencl 一样的内置交叉和点积,所以 cuda 内核可以使用它? 到目前为止,我在规范中找不到任何内容。 最佳答案 您可以在 SDK 的 cutil_math.h 中找到这些
有一些与我要问的问题类似的问题,但我觉得它们都没有触及我真正要寻找的核心。我现在拥有的是一种 CUDA 方法,它需要将两个数组定义到共享内存中。现在,数组的大小由在执行开始后读入程序的变量给出。因此,
经线是 32 根线。 32 个线程是否在多处理器中并行执行? 如果 32 个线程没有并行执行,则扭曲中没有竞争条件。 在经历了一些例子后,我有了这个疑问。 最佳答案 在 CUDA 编程模型中,warp
我是一名优秀的程序员,十分优秀!