- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我正在尝试进行并行缩减以对 CUDA 中的数组求和。目前我传递了一个数组,用于存储每个 block 中元素的总和。这是我的代码:
#include <cstdlib>
#include <iostream>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <helper_cuda.h>
#include <host_config.h>
#define THREADS_PER_BLOCK 256
#define CUDA_ERROR_CHECK(ans) { gpuAssert((ans), __FILE__, __LINE__); }
using namespace std;
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
struct double3c {
double x;
double y;
double z;
__host__ __device__ double3c() : x(0), y(0), z(0) {}
__host__ __device__ double3c(int x_, int y_, int z_) : x(x_), y(y_), z(z_) {}
__host__ __device__ double3c& operator+=(const double3c& rhs) { x += rhs.x; y += rhs.y; z += rhs.z;}
__host__ __device__ double3c& operator/=(const double& rhs) { x /= rhs; y /= rhs; z /= rhs;}
};
class VectorField {
public:
double3c *data;
int size_x, size_y, size_z;
bool is_copy;
__host__ VectorField () {}
__host__ VectorField (int x, int y, int z) {
size_x = x; size_y = y; size_z = z;
is_copy = false;
CUDA_ERROR_CHECK (cudaMalloc(&data, x * y * z * sizeof(double3c)));
}
__host__ VectorField (const VectorField& other) {
size_x = other.size_x; size_y = other.size_y; size_z = other.size_z;
this->data = other.data;
is_copy = true;
}
__host__ ~VectorField() {
if (!is_copy) CUDA_ERROR_CHECK (cudaFree(data));
}
};
__global__ void KernelCalculateMeanFieldBlock (VectorField m, double3c* result) {
__shared__ double3c blockmean[THREADS_PER_BLOCK];
int index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < m.size_x * m.size_y * m.size_z) blockmean[threadIdx.x] = m.data[index] = double3c(0, 1, 0);
else blockmean[threadIdx.x] = double3c(0,0,0);
__syncthreads();
for(int s = THREADS_PER_BLOCK / 2; s > 0; s /= 2) {
if (threadIdx.x < s) blockmean[threadIdx.x] += blockmean[threadIdx.x + s];
__syncthreads();
}
if(threadIdx.x == 0) result[blockIdx.x] = blockmean[0];
}
double3c CalculateMeanField (VectorField& m) {
int blocknum = (m.size_x * m.size_y * m.size_z - 1) / THREADS_PER_BLOCK + 1;
double3c *mean = new double3c[blocknum]();
double3c *cu_mean;
CUDA_ERROR_CHECK (cudaMalloc(&cu_mean, sizeof(double3c) * blocknum));
CUDA_ERROR_CHECK (cudaMemset (cu_mean, 0, sizeof(double3c) * blocknum));
KernelCalculateMeanFieldBlock <<<blocknum, THREADS_PER_BLOCK>>> (m, cu_mean);
CUDA_ERROR_CHECK (cudaPeekAtLastError());
CUDA_ERROR_CHECK (cudaDeviceSynchronize());
CUDA_ERROR_CHECK (cudaMemcpy(mean, cu_mean, sizeof(double3c) * blocknum, cudaMemcpyDeviceToHost));
CUDA_ERROR_CHECK (cudaFree(cu_mean));
for (int i = 1; i < blocknum; i++) {mean[0] += mean[i];}
mean[0] /= m.size_x * m.size_y * m.size_z;
double3c aux = mean[0];
delete[] mean;
return aux;
}
int main() {
VectorField m(100,100,100);
double3c sum = CalculateMeanField (m);
cout << sum.x << '\t' << sum.y << '\t' <<sum.z;
return 0;
}
编辑
贴出功能代码。使用 10x10x10 元素构造一个 VectorField
效果很好,并给出平均值 1,但使用 100x100x100 元素构造它给出平均值 ~0.97(它因运行而异)。这是进行并行缩减的正确方法,还是我应该坚持每个 block 启动一个内核?
最佳答案
当我在 linux 上编译你现在的代码时,我收到以下警告:
t614.cu(55): warning: __shared__ memory variable with non-empty constructor or destructor (potential race between threads)
不应忽略此类警告。它与这行代码相关联:
__shared__ double3c blockmean[THREADS_PER_BLOCK];
由于这些存储在共享内存中的对象(由构造函数)的初始化将以某种任意顺序发生,并且您在初始化和随后设置这些值的代码之间没有障碍,不可预测的事情 (*) 可能会发生。
如果我在代码中插入 __syncthreads()
以将构造函数事件与后续代码隔离开来,我会得到预期的结果:
__shared__ double3c blockmean[THREADS_PER_BLOCK];
int index = threadIdx.x + blockIdx.x * blockDim.x;
__syncthreads(); // add this line
if (index < m.size_x * m.size_y * m.size_z) blockmean[threadIdx.x] = m.data[index] = double3c(0, 1, 0);
else blockmean[threadIdx.x] = double3c(0,0,0);
__syncthreads();
然而,这仍然给我们留下了警告。解决此问题并使警告消失的修改是动态分配必要的 __shared__
大小。将您的共享内存声明更改为:
extern __shared__ double3c blockmean[];
并修改你的内核调用:
KernelCalculateMeanFieldBlock <<<blocknum, THREADS_PER_BLOCK, THREADS_PER_BLOCK*sizeof(double3c)>>> (m, cu_mean);
这将消除警告,产生正确的结果,并避免共享内存变量上不必要的构造函数流量。 (并且不再需要上述额外的 __syncthreads()
。)
*关于“不可预测的事情”,如果您通过检查生成的 SASS(cuobjdump -sass ...)或 PTX(**)(nvcc -ptx ...),您将看到每个线程 将整个 __shared__
对象数组初始化为零(默认构造函数的行为)。因此,一些线程(即 warps)可以抢先并根据此行开始填充共享内存区域:
if (index < m.size_x * m.size_y * m.size_z) blockmean[threadIdx.x] = m.data[index] = double3c(0, 1, 0);
然后,当其他线程开始执行时,这些线程将再次清除整个 共享内存数组。这种赛车行为会导致不可预知的结果。
** 我通常不建议通过检查 PTX 来判断代码行为,但在这种情况下它同样具有指导意义。最终编译阶段不会优化构造函数行为。
关于c++ - cuda 共享内存 - 结果不一致,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27230621/
这是我关于 Stack Overflow 的第一个问题,这是一个很长的问题。 tl;dr 版本是:我如何使用 thrust::device_vector如果我希望它存储不同类型的对象 DerivedC
我已使用 cudaMalloc 在设备上分配内存并将其传递给内核函数。是否可以在内核完成执行之前从主机访问该内存? 最佳答案 我能想到的在内核仍在执行时启动 memcpy 的唯一方法是在与内核不同的流
是否可以在同一节点上没有支持 CUDA 的设备的情况下编译 CUDA 程序,仅使用 NVIDIA CUDA Toolkit...? 最佳答案 你的问题的答案是肯定的。 nvcc编译器驱动程序与设备的物
我不知道 cuda 不支持引用参数。我的程序中有这两个函数: __global__ void ExtractDisparityKernel ( ExtractDisparity& es)
我正在使用 CUDA 5.0。我注意到编译器将允许我在内核中使用主机声明的 int 常量。但是,它拒绝编译任何使用主机声明的 float 常量的内核。有谁知道这种看似差异的原因? 例如,下面的代码可以
自从 CUDA 9 发布以来,显然可以将不同的线程和 block 分组到同一组中,以便您可以一起管理它们。这对我来说非常有用,因为我需要启动一个包含多个 block 的内核并等待所有 block 都同
我需要在 CUDA 中执行三线性插值。这是问题定义: 给定三个点向量:x[nx]、y[ny]、z[nz] 和一个函数值矩阵func[nx][ny][nz],我想在 x、y 范围之间的一些随机点处找到函
我认为由于 CUDA 可以执行 64 位 128 位加载/存储,因此它可能具有一些用于加/减/等的内在函数。像 float3 这样的向量类型,在像 SSE 这样更少的指令中。 CUDA 有这样的功能吗
我有一个问题,每个线程 block (一维)必须对共享内存内的一个数组进行扫描,并执行几个其他任务。 (该数组最多有 1024 个元素。) 有没有支持这种操作的好库? 我检查了 Thrust 和 Cu
我对线程的形成和执行方式有很多疑惑。 首先,文档将 GPU 线程描述为轻量级线程。假设我希望将两个 100*100 矩阵相乘。如果每个元素都由不同的线程计算,则这将需要 100*100 个线程。但是,
我正在尝试自己解决这个问题,但我不能。 所以我想听听你的建议。 我正在编写这样的内核代码。 VGA 是 GTX 580。 xxxx >> (... threadNum ...) (note. Shar
查看 CUDA Thrust 代码中的内核启动,似乎它们总是使用默认流。我可以让 Thrust 使用我选择的流吗?我在 API 中遗漏了什么吗? 最佳答案 我想在 Thrust 1.8 发布后更新 t
我想知道 CUDA 应用程序的扭曲调度顺序是否是确定性的。 具体来说,我想知道在同一设备上使用相同输入数据多次运行同一内核时,warp 执行的顺序是否会保持不变。如果没有,是否有任何东西可以强制对扭曲
一个 GPU 中可以有多少个 CUDA 网格? 两个网格可以同时存在于 GPU 中吗?还是一台 GPU 设备只有一个网格? Kernel1>(dst1, param1); Kernel1>(dst2,
如果我编译一个计算能力较低的 CUDA 程序,例如 1.3(nvcc 标志 sm_13),并在具有 Compute Capability 2.1 的设备上运行它,它是否会利用 Compute 2.1
固定内存应该可以提高从主机到设备的传输速率(api 引用)。但是我发现我不需要为内核调用 cuMemcpyHtoD 来访问这些值,也不需要为主机调用 cuMemcpyDtoA 来读取值。我不认为这会奏
我希望对 CUDA C 中负载平衡的最佳实践有一些一般性的建议和说明,特别是: 如果经纱中的 1 个线程比其他 31 个线程花费的时间长,它会阻止其他 31 个线程完成吗? 如果是这样,多余的处理能力
CUDA 中是否有像 opencl 一样的内置交叉和点积,所以 cuda 内核可以使用它? 到目前为止,我在规范中找不到任何内容。 最佳答案 您可以在 SDK 的 cutil_math.h 中找到这些
有一些与我要问的问题类似的问题,但我觉得它们都没有触及我真正要寻找的核心。我现在拥有的是一种 CUDA 方法,它需要将两个数组定义到共享内存中。现在,数组的大小由在执行开始后读入程序的变量给出。因此,
经线是 32 根线。 32 个线程是否在多处理器中并行执行? 如果 32 个线程没有并行执行,则扭曲中没有竞争条件。 在经历了一些例子后,我有了这个疑问。 最佳答案 在 CUDA 编程模型中,warp
我是一名优秀的程序员,十分优秀!