- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我需要一些帮助来为 Android 应用程序训练 SVM。我有一组不同类别(12 个类别)的图像,并从中获取了所有描述符。我设法为每个图像获得相同数量的描述符。我需要的是使用这些描述符为我的 android 应用程序训练 SVM。我不确定我是否应该在 Android 模拟器中训练它或编写 C++ 程序来训练 SVM,然后将其加载到我的应用程序中(如果我使用 OpenCV 的 windows 库来训练 SVM,然后保存它,将我用于 Android 的 lib 识别保存的 SVM 文件?)。我想我不应该在模拟器中用这么大的数据集训练支持向量机。我已经在 Weka ( http://www.cs.waikato.ac.nz/ml/weka/ ) 的 SMO 上测试了我的描述符数据集并获得了良好的结果,但我需要实现(或使用 openCV 的)SVM 并保存它以供将来分类训练。
最佳答案
这是在 OpenCV4Android 中训练 SVM 的示例。 trainData
是 MatOfFloat
,其形式将取决于您用来获取特征向量的方法。制作trainData
, 我用过 Core.hconcat()
将数据集每个元素的特征向量连接成一个 Mat
.
Mat responses = new Mat(1, sizeOfDataset, CvType.CV_32F);
responses.put(0, 0, labelArray); // labelArray is a float[] of labels for the data
CvSVM svm = new CvSVM();
CvSVMParams params = new CvSVMParams();
params.set_svm_type(CvSVM.C_SVC);
params.set_kernel_type(CvSVM.LINEAR);
params.set_term_crit(new TermCriteria(TermCriteria.EPS, 100, 1e-6)); // use TermCriteria.COUNT for speed
svm.train_auto(trainData, responses, new Mat(), new Mat(), params);
我相当确定 OpenCV 使用相同的格式在 Android 和 C++ 接口(interface)中保存 SVM。当然,您始终可以在 Android 中训练 SVM 并将 XML 文件保存到模拟器的 SD 卡中,使用类似
File datasetFile = new File(Environment.getExternalStorageDirectory(), "dataset.xml");
svm.save(datasetFile.getAbsolutePath());
然后将其从 SD 卡中取出并存储在您应用的 /res/raw
中文件夹。
关于android - OpenCV for Android - 使用 SURF 描述符训练 SVM,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/16162150/
如果我在 lrge 训练集上训练 SVM,并且类变量是 True 或 False,那么与训练集中的 False 值数量相比,True 值很少会影响训练模型/结果吗?他们应该平等吗?如果我的训练集的 T
假设我的特征向量是 (x1, x2, ...xn) 谁能给我一个代码来使用 libSVM 训练一类 SVM? 我应该如何使用交叉验证来学习参数。 最佳答案 这可能会帮助你 label=ones(Num
我提前为这个问题的新颖性道歉,但我被卡住了。我正在尝试解决这个问题, 我可以做第 i)-1v) 部分,但我卡在了 v 上。我知道计算余量 y,你可以 y=2/||W|| 而且我知道W是超平面的法线,只
我有以下 R 配置: 操作系统:LinuxR 版本 3.0.1 (2013-05-16)rmr2 版本 2.2.1rhdfs 版本 1.0.6hadoop 版本 1.2.0 如何使用带 rmr2 包的
我想尝试不同的嵌入,例如 Word2Vec、ELMo 和 BERT,但我有点困惑是使用词嵌入还是句子嵌入,以及为什么。我将嵌入用作 SVM 分类器的特征输入。 谢谢。 最佳答案 虽然这两种方法都可以证
几乎所有的例子都是基于数字的。在文本文档中,我有文字而不是数字。 那么你能告诉我如何使用这些算法进行文本文档分类的简单示例吗? 我不需要代码示例,只需要逻辑 伪代码将有很大帮助 最佳答案 常用的方法是
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 我们不允许提问寻求书籍、工具、软件库等的推荐。您可以编辑问题,以便用事实和引用来回答。 关闭 3 年前。
我目前正处于语音识别的讨论阶段项目,我使用MFCC特征提取,但是从函数返回的MFCC特征是一个矩阵,例如每个语音文件(wav)的(20,38)特征矩阵。但是我如何将此功能传递给 SVM 分类器。对于
请我喜欢用 SIFT DESCRIPTOR 和 SVM 将一组图像分类为 4 类。现在,使用 SIFT 提取器,我得到了不同大小的关键点,例如 img1 有 100 个关键点,img2 有 55 个关
我有一组图像。我想学习一类支持向量机(OC-SVM)来模拟特定类(正)的分布,因为我没有足够的例子来代表其他类(负)。我对 OC-SVM 的理解是,它试图将数据与源分离,换句话说,它试图学习一个超球体
我正在使用 scikit-learn 使用 SVM 构建一些预测模型。我有一个包含大约 5000 个示例和大约 700 个特征的数据集。我在我的训练集上使用 18x17 网格搜索进行 5 折交叉验证,
这是我考试时提出的问题。我给出了以下答案,我的得分是0分。教授甚至不同意给予任何部分的认可,也没有告诉我我的答案有什么问题。谁能帮我找出我的答案有什么问题吗? 这是我在考试中给出的答案。缺点是:1)
tune.svm() 和 best.svm() 有什么区别。 当我们调整 svm 内核的参数时,我们不希望总是为我们的模型选择最佳值。 请原谅,因为我是 R 和机器学习的新手。 我注意到在调整 svm
我尝试使用 OpenCV2.3 实现基于 SVM 和 HOG 的人员检测系统。但是我卡住了。 我走到这一步:我可以从图像数据库计算 HOG 值,然后我用 LIBSVM 计算 SVM 向量,所以我得到例
Mahout(机器)中围绕 SVM(支持向量机)的任何新发展Learning With Hadoop) 使用 Hadoop?最近 SVM 实现被添加到 Mahout 中。我打算使用 SVM。有人尝试过
我使用 sklearn.svm.SVC 构建支持向量分类器,如下所示。 import numpy as np from sklearn.svm import SVC svc=SVC(proba
我想看看模型是否收敛于我的交叉验证。我如何增加或减少 sklearn.svm.SVC 中的时代? 目前: SVM_Model = SVC(gamma='auto') SVM_Model.fit(X_t
与在 SVM 的相同成本函数中使用 2-范数权重相比,我们如何通过在成本函数中使用 1-范数权重来提高稀疏性。 对于 1-范数:成本函数 - 最小化 ||w||_1 对于 2-范数:成本函数 - 最小
事实上,我不是一个经验丰富的 C++ 程序员,我是一个 C# 程序员,正如你所知道的,它有很大的不同,根据我的机器学习经验,我只使用了 matlab,所以如果我有一些,请原谅概念错误。 我正在尝试在
我正在尝试使用 OpenCV 中的 SVM 加载函数加载 .xml 文件,然后使用预测函数对交通标志进行分类。当到达预测函数的执行时抛出错误: Unhandled exception at 0x000
我是一名优秀的程序员,十分优秀!