- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
正如问题标题所说,我想知道为什么字节编译的 R 代码(使用 compiler::cmpfun
)比以下数学函数的等效 Rcpp 代码更快:
func1 <- function(alpha, tau, rho, phi) {
abs((alpha + 1)^(tau) * phi - rho * (1- (1 + alpha)^(tau))/(1 - (1 + alpha)))
}
因为这是一个简单的数值运算,我原以为 Rcpp(funcCpp
和 funcCpp2
)比字节编译的 R(func1c
和 func2c
),特别是因为 R 会在存储 (1+alpha)**tau
时有更多开销或需要重新计算它。事实上,两次计算这个指数似乎比 R 中的内存分配更快(func1c
vs func2c
),这似乎特别违反直觉,因为 n
是大。我的另一个猜测是,也许 compiler::cmpfun
正在施展魔法,但我想知道情况是否确实如此。
真的,我想知道的两件事是:
为什么 funcCpp 和 funcCpp2 比 func1c 和 func2c 慢? (Rcpp 比编译后的 R 函数慢)
为什么 funcCpp 比 func2 慢? (Rcpp 代码比纯 R 慢)
FWIW,这是我的 C++ 和 R 版本数据
user% g++ --version
Configured with: --prefix=/Library/Developer/CommandLineTools/usr --with-gxx-include-dir=/usr/include/c++/4.2.1
Apple LLVM version 7.0.0 (clang-700.0.72)
Target: x86_64-apple-darwin14.3.0
Thread model: posix
user% R --version
R version 3.2.2 (2015-08-14) -- "Fire Safety"
Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin14.5.0 (64-bit)
这是 R 和 Rcpp 代码:
library(Rcpp)
library(rbenchmark)
func1 <- function(alpha, tau, rho, phi) {
abs((1 + alpha)^(tau) * phi - rho * (1- (1 + alpha)^(tau))/(1 - (1 + alpha)))
}
func2 <- function(alpha, tau, rho, phi) {
pval <- (alpha + 1)^(tau)
abs( pval * phi - rho * (1- pval)/(1 - (1 + alpha)))
}
func1c <- compiler::cmpfun(func1)
func2c <- compiler::cmpfun(func2)
func3c <- Rcpp::cppFunction('
double funcCpp(double alpha, int tau, double rho, double phi) {
double pow_val = std::exp(tau * std::log(alpha + 1.0));
double pAg = rho/alpha;
return std::abs(pow_val * (phi - pAg) + pAg);
}')
func4c <- Rcpp::cppFunction('
double funcCpp2(double alpha, int tau, double rho, double phi) {
double pow_val = pow(alpha + 1.0, tau) ;
double pAg = rho/alpha;
return std::abs(pow_val * (phi - pAg) + pAg);
}')
res <- benchmark(
func1(0.01, 200, 100, 1000000),
func1c(0.01, 200, 100, 1000000),
func2(0.01, 200, 100, 1000000),
func2c(0.01, 200, 100, 1000000),
func3c(0.01, 200, 100, 1000000),
func4c(0.01, 200, 100, 1000000),
funcCpp(0.01, 200, 100, 1000000),
funcCpp2(0.01, 200, 100, 1000000),
replications = 100000,
order='relative',
columns=c("test", "replications", "elapsed", "relative"))
这是 rbenchmark
的输出:
test replications elapsed relative
func1c(0.01, 200, 100, 1e+06) 100000 0.349 1.000
func2c(0.01, 200, 100, 1e+06) 100000 0.372 1.066
funcCpp2(0.01, 200, 100, 1e+06) 100000 0.483 1.384
func4c(0.01, 200, 100, 1e+06) 100000 0.509 1.458
func2(0.01, 200, 100, 1e+06) 100000 0.510 1.461
funcCpp(0.01, 200, 100, 1e+06) 100000 0.524 1.501
func3c(0.01, 200, 100, 1e+06) 100000 0.546 1.564
func1(0.01, 200, 100, 1e+06) 100000 0.549 1.573K
最佳答案
这本质上是一个不适定的问题。当你放置
func1 <- function(alpha, tau, rho, phi) {
abs((alpha + 1)^(tau) * phi - rho * (1- (1 + alpha)^(tau))/(1 - (1 + alpha)))
}
甚至不指定参数是什么(即标量? vector ?大?小?内存开销),那么在最好的情况下,您可能会直接从解析的表达式中获得一小组(基本的,高效的)函数调用。
自从我们有了字节编译器(Luke Tierney 在随后的 R 版本中对其进行了改进)以来,我们就知道它可以很好地处理代数表达式。
现在,编译后的 C/C++ 代码也能很好地做到这一点——但是调用编译后的 coed 会产生开销,您在这里看到的是,对于“足够简单”的问题,开销并没有真正得到摊销。
所以你最终几乎是平局。据我所知,这并不奇怪。
关于c++ - 为什么这个 Rcpp 代码比字节编译的 R 慢?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33159349/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!